

Biophysical characterization of SMALPs and nanodiscs

Verna Frasca, Ph.D. Malvern Panalytical Verna.Frasca@Malvern.com

Malvern Panalytical

Provider of industry leading analytical instrumentation for the characterization of

Along with the expertise and understanding of how

Malvern Panalytical Biosciences Group Solutions and Instrumentation for SMALP and nanodisc characterization

- Driving advances in biophysical characterization by engaging and collaborating with researchers to improve understanding of biomolecular interactions and to accelerate development of more effective drugs
- From molecular interactions to successful drug products

Zetasizer Nano & APS

Submicron Light Scattering

- Size, Charge, and Interaction Parameters
- Proteins, peptides, biopolymers, and nanoparticles
- Screen for aggregation propensity
- Zeta potential
- Rapid aggregate assessment
- Screen For Colloidal Stability
- Multivariate data sets for stability and aggregation metrics from ultra-low volume/concentration assays

Stability Profile

IgG Stability Profiles For Buffer 1 And Buffer 2					
Property	Buffer 1	Buffer 2			
k _D (ml/g)	-5.2	31.9			
$B_{22} (x 10^5 \text{ ml mole/g}^2)$	-1.5	127.5			
Z_{Eff}	0.7	4.3			
$T_{m}(C)$	56	> 56			
$T_{Agg}(C)$	66	> 66			
R _s (nm)	5.8	5.7			
SubQ Limit (mg/ml)	137	148			

Probing molecular interactions of poly(styrene-comaleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer

Particle size and zeta potential measurements with Zetasizer NanoZS DLS

System ^a	Hydrodynamic diameter ^b (nm)	Zeta potential ^b (mV)
A	1453 ± 21.5	-3.62 ± 0.42
В	1746 ± 31.8	-8.54 ± 0.72
C	1501 ± 24.2	-4.18 ± 0.47
D	1739 ± 28.7	-8.26 ± 0.57
E	1420 ± 38.1	$+12.9 \pm 1.12$
F	1579 ± 25.4	-8.72 ± 0.50
G	1507 ± 42.9	-17.1 ± 1.54
Н	1852 ± 36.3	-26.5 ± 1.06
	194.8 ± 1.4	

^a Compositions of the systems are as follows: A, DSPC; B, DSPC+SMA; C, DSPC+CHOL; D, DSPC+CHOL+SMA; E, DSPC+DODAB+CHOL; F, DSPC+DODAB+CHOL+SMA; G, DSPC+DCP+CHOL; H, DSPC+DCP+CHOL+SMA.

- The observed slight increase in the mean hydrodynamic diameter of the MLVs in presence of SMA was due to incorporation of the co-polymer within the bilayers
- Zeta potential measurements revealed significant change in the vesicle surface charge in presence of the anionic copolymer.

b Mean \pm SD (n=3).

Samples: Neat and SMA-incorporating MLVs at pH 7.0

Banerjee et. al, Biochim Biophys Acta, 1818, 537-550 (2012)

OMNISEC/MALS

Advanced Detection & MALS SEC

- Absolute M_W, oligomeric distribution, %Purity, and size from a single injection
- Multi detection SEC includes UV, RI, MALS, and DLS, as well as DSV for intrinsic viscosity
- Increased light scattering sensitivity for detecting trace amounts of HMW species
- Define Oligomeric Baseline
- Measure %Purity & distribution
- Track aggregation & HMW species generation

Denosumab (Prolia® and Xgeva®): Innovator and Biosimilar

Stressed – Incubation at 30°C

Innovator 99% monomer 1% dimer Biosimilar 97% monomer 1.5% dimer

1.5% aggregates

SMALP analysis (SMA distribution) – OMNISEC data

UV area: 192 mVmL

RI, RALS, DP, A₂₆₀

UV area [1]: 99 mVmL

UV area [2]: 93 mVmL

Molecular Biophysics Keller Lab

→ Nearly 50% of SMA is free in solution

SMALP analysis (SMA distribution) – OMNISEC data

→ The second peak is virtually lipid-free

SMALP analysis (SMA distribution)

→ SMA is more abundant in the right flank of the SMALP peak

SMALP analysis (SMALP size and composition)

- OMNISEC data

Malvern Panalytical

 $M_{\rm w}$: 161 kg mol⁻¹

 $M_{\rm w}/M_{\rm p}$: 1.05

 $[\eta]$: 0.049

R_h: 5.0 nm

X _{SMA/DMPC}: 0.40

- → SMALP masses and sizes are narrowly distributed
- → SMA contributes 40% to the total mass of SMALPs

Summary and conclusions: OMNISEC

- Nearly 50% of SMA is free in solution
- SMALPs show relatively narrow size and mass distributions
- SMA contributes a significant amount to the SMALP mass
- Combining data on hydrodynamic size and mass confirms disc shape of SMALPs

MicroCal PEAQ DSC

Differential Scanning Calorimetry

- Conformational Stability
- Sensitive to biopolymer domain transitions
- Phase transition reversibility
- T_m correlated with aggregation propensity, formulation stability, and shelf life
- Screen For Structural Stability
- High quality thermal phase transition data
- Gold standard, label-free, universal tool for studying thermal stability

Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymen Panalytical

Thermal stability using MicroCal VP-DSC

- Study the thermotropic phase behavior of liposomes from which the molecular interactions between the co-polymer and phospholipids were quantitatively probed
- Representative DSC heating scans of
- A, DSPC; B, DSPC+SMA;
- C, DSPC+CHOL; D, DSPC+CHOL+SMA;
- E, DSPC+DODAB+CHOL; F, DSPC+DODAB+CHOL+SMA;
- G, DSPC+DCP+CHOL; H, DSPC+DCP+CHOL+SMA
- Multilamellar vesicles prepared in hepes buffered saline (10mM Hepes+150 mM NaCl, pH 7.0).
- Changes in T_M, enthalpy and peak broadening provide insights into the mechanism and interaction between SMA and the MLVs

Banerjee et. al, Biochim Biophys Acta, 1818, 537-550 (2012)

MicroCal PEAQ ITC

Isothermal Titration Calorimetry

- Affinity and Function
- Measures any interactions between two biomolecules in solution or suspension, including nanoparticles and nanodiscs
- Micellization/demicellization
- Confirm Function
- High quality affinity data and stoichiometry
- Gold standard, label-free, universal tool for studying biomolecular interactions

FhuA interactions in a detergent-free nanodisc environment

Binding affinity, stoichiometry and thermodynamics using MicroCal VP-ITC

 Binding affinity between Nd-FhuA and TonB32–239. The ITC thermograms show the interaction of Nd-FhuA with TonB in the presence (A) or absence of ferricrocin (B).

Binding affinities and thermodynamics between Nd-FhuA, TonB and ColM.

Titrant	Cell	N	K _D (nM)	ΔH (cal/mol)	ΔS (cal/mol/deg)
TonB	Nd-FhuA apo	~	-	-	-
TonB	Nd-FhuA-Fc	0,977 ± 0,0100	200.4 ± 29.3	-9186 ± 133.4	-0.164
Colicin M	Nd-FhuA apo	0.906 ± 0.0016	3.48 ± 1.09	7969 ± 33.3	65.4
Colicin M	Nd-FhuA- Fc		-	-	-
TonB	Nd-FhuA- ColM	Er.	-	-	-

The estimated errors are based on a $\chi 2$ minimized fit of the experimental data to a singlesite binding model using Origin 7.0 software (OriginLab).

Summary

- ITC, DSC, DLS, and Multi-detection SEC contribute important information about SMALPs and nanodisc structure, mechanism, and interactions
- Use in conjunction with other techniques for complete biophysical characterization and development of new methods and products
 - SPR
 - FTIR
 - NMR
 - Mass spec
 - CD
 - Analytical ultracentrifugation
 - Microscopy

Malvern Panalytical – Solutions and Instrumentation for Bioscience

