

How Styrene Maleic Acid Copolymers Induce Membrane Fracture and Disc Formation

Victoria Ariel Bjørnestad, Marcella Orwick-Rydmark and <u>Reidar Lund</u>

Bio³- Soft Matter Department of Chemistry, University of Oslo

Email: reidar.lund@kjemi.uio.no <u>www.softmatter.no</u>

Victoria Bjørnestad

Reidar Lund, Faraday Discussion 9th of September 2021

Soft matter group in Oslo

Soft Matter group in Oslo: some ongoing projects

Mechanism of antimicrobial peptides

Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport J.E. Nielsen, V.A. Bjørnestad, V. Pipich, H. Jenssen, R. Lund. *Journal of colloid and interface science* 2021 582, 793-802

Impact of Antimicrobial Peptides on E. coli-mimicking Lipid Model Membranes: correlating structural and dynamic effects using scattering methods J.E. Nielsen, S. Prévost, H. Jenssen, R. Lund. *Faraday Discussions* 2020

Lipid membrane interactions of self-assembling antimicrobial nanofibers: effect of **PEGylation** J.E. Nielsen, N. König, S. Yang, M.W.A. Skoda, A. Maestro, H. Dong, M. Cárdenas, R. Lund. *RSC Advances* 2020, 10 (58), 35329-35340

A biophysical study of the interactions between the antimicrobial peptide indolicidin and lipid model systems J.E. Nielsen, T.K. Lind, A. Lone, Y. Gerelli, P.R. Hansen, H. Jenssen, M. Cárdenas, R. Lund. *BBA-Biomembranes* 2019, 1861 (7), 1355-1364

Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods: the case of indolicidin J.E. Nielsen, V.A. Bjørnestad, R. Lund. *Soft Matter* 2018, 14 (43), 8750-876

aydrophobis bydrophilis

Halogenation as a tool to tune antimicrobial activity of peptoids. N. Molchanova, J. E. Nielsen, K. B. Sørensen, B. K. Prabhala, P. R. Hansen, R. Lund, A. E. Barron, H. Jenssen. *Scientific Reports* 2020, 10, 14805.

Internal Structure of 15 nm 3-Helix Micelle Revealed by Small-Angle Neutron Scattering and Coarse-Grained MD Simulation. J. Ang, D. Ma, R. Lund, S. Keten, T. Xu. *Biomacromolecules* 2016, 17 (10), 3262–3267.

Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles J. Sun, X. Jiang, R. Lund, K.H. Downing, N.P. Balsara, R.N. Zuckermann, *PNAS* 2016, 113 (15), 3954–3959.

Understanding Peptide Oligomeric State in Langmuir Monolayers of Amphiphilic 3-Helix Bundle-Forming Peptide-PEG Conjugates. R. Lund, J. Ang, J.Y. Shu, T. Xu, T. *Biomacromolecules* 2016, 17 (12), 3964–3972.

Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity. D. Xu, L. Jiang, A. Singh, D. Dustin, M. Yang, L. Liu, R. Lund, T.J. Sellati, H. Dong. *Chem. Commun.* 2014, 51 (7), 1289–1292.

Filamentous supramolecular peptide–drug conjugates as highly efficient drug delivery vehicles. M. Yang, D. Xu, L. Jiang, L. Zhang, D. Dustin, R. Lund, L. Liu, H. Dong,. *Chem. Commun.* 2014, 50 (37), 4827–4830.

Structures and Kinetics Pathways of Self-assembly

How Detergents Dissolve Polymeric Micelles: Kinetic Pathways of Hybrid Micelle Formation in SDS and Block Copolymer Mixtures. S. Myhre, M. Amann, L. Willner, K. D Knudsen, R. Lund. *Langmuir* 2020, 36, 12887–12899.

Supramolecular Packing Drives Morphological Transitions of Charged Surfactant Micelles. K.Schäfer, H. B. Kolli, M. Killingmoe Christensen, S. L. Bore, G. Diezemann, J. Gauss, G. Milano, R. Lund, M. Cascella. *Chem. Int. Ed.* 2020, 6, 3–9.

Cooperativity during Melting and Molecular Exchange in Micelles with Crystalline Cores N. König, L. Willner, V. Pipich, T. Zinn, R. Lund. *Physical Review Letters*. 122(7).

Tale of Two Tails: Molecular Exchange Kinetics of Telechelic Polymer Micelles N. König, L. Willner, N. Mahmoudi, T. Zinn, R. Lund. *Physical Review Letters*. 124(19)

Kinetic Pathways for Polyelectrolyte Coacervate Micelle Formation Revealed by Time-Resolved Synchrotron SAXS M. Amann, J. Stensgaard Diget, J. Lyngsø, J.S. Pedersen, T. Narayanan, R. Lund. *Macromolecules*, 52 (21), 8227-8237

Molecular Exchange Kinetics of Micelles: Corona Chain Length Dependence. T. Zinn, L. Willner, V. Pipich, D. Richter, R. Lund. *ACS Macro Lett.* 2016 5, 884–888

Effect of Core Crystallization and Conformational Entropy on the Molecular Exchange Kinetics of Polymeric Micelles. T. Zinn, L. Willner, V. Pipich, D. Richter, R. Lund. ACS Macro Lett. 2015. 4. 6. 651–655

Polymers: micelles and hydrogels

Structure and thermodynamics of mixed polymeric micelles with crystalline cores: tuning properties via co-assembly N. König, L. Willner, R. Lund. Soft Matter. 15(39), 7777-7786.

Spherical Micelles with Nonspherical Cores: Effect of Chain Packing on the Micellar Shape. N.König, L. Willner, G. Carlström, T. Zinn, K.D. Knudsen, F. Rise, D. Topgaard, R. Lund. Macromolecules. 53(23), s 10686-10698

Cooperativity During Melting and Molecular Exchange in Micelles with Crystalline Cores. König, N.; Willner, L.; Pipich, V.; Zinn, T.; Lund, R. Phys. Rev. Lett. 2019, 122, 078001.

Telechelic Polymer Hydrogels: Relation between the Microscopic Dynamics and Macroscopic Viscoelastic Response. T. Zinn, L. Willner, R. Lund. *ACS Macro Lett.* 2016, 5, 12, 1353–1356.

Nanoscopic Confinement through Self-Assembly: Crystallization within Micellar Cores Exhibits Simple Gibbs-Thomson Behavior. T. Zinn, L. Willner, R. Lund. *Phys. Rev. Lett.* 113, 238305 (2014).

Tale of Two Tails: Molecular Exchange Kinetics of Telechelic Polymer Micelles. König, N.; Willner, L.; Pipich, V.; Mahmoudi, N.; Lund, R. Phys. Rev. Lett. 2020, 124, 197801.

Novel peptide/peptoid-based nanostructures

Soft Matter group in Oslo: Victoria's PhD

Motivation: understand the formation of nanodiscs

Structural characterization using small angle X-ray scattering

Reidar Lund, NSSM Seminar 16th of February. 2021

SAXS analysis

Analytical modelling

SAXS modelling: various shapes

SAXS: SMA polymer

SMA(3:1) polymer in Tris buffer, 0.125M NaCl Globular collapsed structures («fuzzy spheres»)

SAXS : SMA/lipid vesicle mixtures

SAXS : SMA/lipid vesicle mixtures: DMPC

SAXS : SMA/lipid vesicle mixtures- POPC

SAXS : SMA/lipid vesicle mixtures- other form factors

Other model candidates

Ellipsoidal core-shell mixed micelle Radius **Belt thickness** l(Q) [cm⁻¹] **Q [**Å⁻¹] Lipid disc with SMA belt l(Q) [cm⁻¹] l(Q) [cm⁻¹] **Q** [Å⁻¹] Mixed lipid:SMA disc l(Q) [cm⁻¹] **Q** [Å⁻¹] **Q** [Å⁻¹]

SMA/lipid vesicle mixtures: onset and completion of solubilisation

18 °C 37 °C

Onset and completion of solubilisation occurs at lower SMA(3:1) concentrations for DMPC below the transition temperature

 \rightarrow also found by Cuevas Arenas et al. using NMR and DLS (Nanoscale,2016,8,15016–15026)

SMA/lipid vesicle mixtures: structure of SMA:lipid nanodiscs

Conclusion

SMA(3:1) concentration

- Formation of nanodisc from lipid vesicles by SMA(3:1) largely follows the classical steps of solubilisation
- The bilayer fractures already before complete saturation occurs
- DMPC lipid bilayers are saturated and solubilised at lower SMA(3:1) concentrations when below the transition temperature
- POPC lipid have a higher resistance towards solubilisation by SMA(3:1) compared to DMPC
- Lipid acyl-chain packing is found to be disrupted by SMA(3:1) insertion
- Lateral distribution of SMA(3:1) in the surface of the bilayer persists in the solubilised discs only excess SMA(3:1) forms the belt.

Marcella Orwick Rydmark

DESY.

Victoria Bjørnestad

pubs.acs.org/Langmuir

Article

Understanding the Structural Pathways for Lipid Nanodisc Formation: How Styrene Maleic Acid Copolymers Induce Membrane Fracture and Disc Formation

Victoria Ariel Bjørnestad, Marcella Orwick-Rydmark, and Reidar Lund*

📀 ci	Cite This: Langmuir 2021, 37, 6178–6188		Read Online		
ACCE	SSI Lui	Metrics & More	🖭 Article Rec	ommendations	Supporting Information

Thanks, takk..!

also present in the formed dises, while excess copolyther distributed

along the normal of the bilayer. The size and SMA distribution in the resulting discs strongly depend on the temperature, lipid/ copolymer ratio, and lipid type. We find that the solubilization limit increases for membranes above the melting point, suggesting that defects in gel-like lipid membranes play a significant role in membrane fracturing and nanodisc formation. These findings provide unique insights into the formation of nanodiscs as well as into the microscopic mechanism of solubilization, which plays an important role in many applications and products ranging from household goods to biotechnology and medicine.