Functional integrity of membrane protein rhodopsin solubilized by amphipathic polymers

Stephanie Pitch Ph.D. candidate - Kliger Lab UC Santa Cruz

> SMALP Conference 1 Oct. 2021

Rhodopsin is a member of the G-protein-coupled receptor (GPCR) superfamily

- GPCRs covert extracellular signals into intracellular pathways through the activation of G proteins
- Rhodopsin opsin + 11-*cis*-retinal (11CR)

DOI: 10.1021/acs.chemrev.7b00723 DOI: 10.1021/cr400107q

Using time-resolved absorption spectroscopy to study the photoactivation of rhodopsin

Rhodopsin is useful as a tool to study the effects of various solubilizing agents

<u>Detergents</u>

- removes native lipids- reduces light scattering
- decreases stability/alters protein dynamics

Membrane scaffold proteins (MSPs)

- detergent-solubilized, lipids are added back in desired ratio
- increases protein stability/retains protein dynamics

Amphipathic polymers (amphipols)

- detergent-solubilized or native lipids
- may alter protein dynamics when present in excess

DOI: 10.1007/s00249-015-1093-y DOI: 10.1562/2006-02-01-RA-792 DOI: 10.1038/s41598-018-31925-1 DOI: 10.1021/bi200391a

Amphipols used to solubilize bovine rhodopsin directly from native ROS disc membranes

From Greek *rhodon* 'rose' + *opsis* 'sight'

Testing the photoactivation properties of rhodopsin-SMA(3:1)LPs

While the highest SMA/rhodopsin ratios yielded the most solubilized protein, the rhodopsin did not reach the active (Meta-II) state upon photoactivation

• time-dependent absorption changes up to 45-min. after photolysis showed no noticeable shift toward Meta-II

<u>ratios 1-10</u>: 30% Meta-I₄₈₀ and 70% Meta-II <u>ratio 25</u>: 55% Meta-I₄₈₀ and 45% Meta-II <u>ratios 50-100</u>: only Meta-I₄₈₀

DOI: 10.1016/j.bpj.2021.05.008

Using high SMA(3:1)/rhodopsin molar ratios yields extremely slow photokinetics

Rhodopsin-SMALPs made at **low** ratios (≤10-15):

• follow a reaction mechanism that leads to the active state, although at slower rates

Rhodopsin-SMALPs made at **high** ratios (20+):

• the reaction path becomes disrupted (formation of 460-nm photoproduct) and the active state is not reached

DOI: 10.1016/j.bpj.2021.09.012

Reaction progress in LPs is slower compared to the native membrane environment

- polymers slow down the reaction steps at the late stages where big conformational changes occur
- reaction progress is slower with DIBMA, but excess polymer is less disruptive to reaction path

Why is the reaction progress slower in LPs compared to native ROS membranes?

Does the rigidity of the protein and its surroundings increase?

• insertion of the hydrophobic moieties between the unsaturated alkyl chains

Are the hydrophobic moieties interacting with cholesterol binding site?

• [SMA(2:1)LPs vs. SMA(3:1)LPs] vs. DIBMALPs

slower reaction progress

cholesterol

DOI: 10.1007/s12274-014-0560-6 DOI:10.1007/978-94-007-7423-0_5

Mutations of the rhodopsin gene cause autosomal dominant retinitis pigmentosa (adRP)

DOI: 10.1016/j.visres.2003.08.010 DOI: 10.1111/j.1742-4658.2011.08066.x

Acknowledgments

University of California, Santa Cruz

- David Kliger, Pl
- Eefei Chen, Ph.D.
- Jim Lewis, Ph.D.
- Istvan Szundi, Ph.D.
- Chie Funatogawa, Ph.D.
- Pamela Schleissner, grad

Oregon Health & Science University

- David Farrens, Ph.D.
- Jonathon Fay, Ph.D.
- Weekie Yao, grad

<u>University of Tennessee, Knoxville</u>

- Barry Bruce, Ph.D.
- Brian Long, Ph.D.
- Cameron Workman, grad

