

Dr. Marta Barniol-Xicota Laboratory of Chemical Biology marta.barniolxicota@kuleuven.be

Rhomboids are fragile intramembrane proteases

Undercharacterized group of intramembrane proteases

Substrate cleavage in the membrane

Linked to: Alzheimer's disease, Malaria, Parkinson's disease

LUMEN / EXTRACELLULAR

xMA stabilize fragile intramembrane proteases

Challenging expression & purification:

- Self-process in detergent micelles
- Loss of activity

Barniol-Xicota, M. & Verhelst, S. H. L. JACS. 2018, 140, 44, 14557

Activity level changes depending on xMA used

Activity measured using activity based probe TAMRA-FP + in

gel resolution

Barniol-Xicota, M. & Verhelst, S. H. L. JACS. 2018, 140, 44, 14557

Do xMALPs ressemble the native mebrane?

- Eukaryotic : Jurkat cells

> Solubilization efficiency

compared to non ionic detergent DDM

> Protein content SDS-PAGE

> Lipid content:

lipidomics

xMA are efficient solubilizing agents ***

E. coli solubilization efficiency

In Jurkat membranes SMAs and DIBMA

as efficient as DDM

Poor solubilization of high MW proteins by all xMAs in **Jurkat** membranes

xMA preferentially solubilize lipid species

Cholesterol content

Lipid charge does not influence solubilization

Saturation has little effect on xMA solubilization

Fatty acid chain saturation in total lipid content (Jurkat)

Analyzed by LC-MS/MS

Saturation has little effect on xMA solubilization

Fatty acid chain saturation in <u>specific</u> lipid classes (Jurkat) - Analyzed by LC-MS/MS

Phosphatidylcholine (PC)

FA chain length does not guide xMA solubilization

Fatty acid chain length total carbons in total phospholipid (Jurkat) Analyzed by LC-MS/MS

FA chain length does not guide xMA solubilization

Fatty acid chain total carbons in total phosphatidylinositol (Jurkat) Analyzed by LC-MS/MS

DDM

DIBMA

Membrane

Conclusions

- xMA efficient solubilizing agents
- Membrane structure seems to influence solubilization preferences
- Select xMA depending on protein of interest and expression system
- Not all xMAs are membrane like.

SMA(3:1) most membrane like.

- Caution when determining lipid environment/activity of xMALPed proteins
- Future: novel polymers with improved membrane disruption properties

Acknowledgements

- Prof. Steven Verhelst
- Lab of Chemical Biology

Flanders Opening new horizons

KU LEUVEN

Preprint available in Chemrxiv

https://chemrxiv.org/s/6cccbf5fdacc5887a89d

Dr. Marta Barniol-Xicota

Laboratory of Chemical Biology

marta.barniolxicota@kuleuven.be