SMALP publications by year

smalp pubs

The following papers report developments related to SMALPs and native nanodiscs:


McCalpin SD, Ravula T, Ramamoorthy A. Saponins Form Nonionic Lipid Nanodiscs for Protein Structural Studies by Nuclear Magnetic Resonance Spectroscopy. J Phys Chem Lett. 13(7):1705-1712.

Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, Hinshaw JE, Bernstein HD. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell. 185(7):1143-1156.e13.

Krishnarjuna B, Ravula T, Ramamoorthy A.Detergent-free isolation of CYP450-reductase's FMN-binding domain in E. coli lipid-nanodiscs using a charge-free polymer. Chem Commun. 58(31):4913-4916.

Notti RQ, Walz T. Native-like environments afford novel mechanistic insights into membrane proteins. Trends Biochem Sci. in press

Laurence MJ, Carpenter TS, Laurence TA, Coleman MA, Shelby M, Liu C. Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation SpectroscopyMembranes. 12(4):392.

Cao Y, Fang J, Shi Y, Wang H, Chen X, Liu Y, Zhu Z, Cao Y, Hong Z, Chai Y, Screening potential P-glycoprotein inhibitors by combination of a detergent-free membrane protein extraction with surface plasmon resonance biosensor. Acta Pharmaceutica Sinica B, in press.

Stoddart LA, Goulding J, Briddon SJ. Advances in the application of fluorescence correlation spectroscopy to study detergent purified and encapsulated membrane proteins. Int J Biochem Cell Biol: 146:106210.

Neville GM, Edler KJ, Price GJ. Fluorescent styrene maleic acid copolymers to facilitate membrane protein studies in lipid nanodiscs. Nanoscale14, 5689-5693

Lee HJ, HS Lee, T Youn, B Byrne, PS Chae, Impact of novel detergents on membrane protein studies, Chem, 8(4):980-1013.

Migliore N, TG Van Kooten, G Ruggeri, F Picchioni, P Raffa, Synthesis and solution properties of poly(p,α dimethylstyrene-co-maleic anhydride): The use of a monomer potentially obtained from renewable sources as a substitute of styrene in amphiphilic copolymers, React Funct Polym, 172,105204

Kopf AH, Lijding O, Elenbaas BOW, Koorengevel MC, Dobruchowska JM, van Walree CA, Killian JA. Synthesis and Evaluation of a Library of Alternating Amphipathic Copolymers to Solubilize and Study Membrane Proteins. Biomacromolecules. 23(3):743-759.

Jeong C, Franklin R, Edler KJ, Vanommeslaeghe K, Krueger S, Curtis JE. Styrene-Maleic Acid Copolymer Nanodiscs to Determine the Shape of Membrane Proteins. J Phys Chem B.126(5):1034-1044.

Danielczak B, Rasche M, Lenz J, Pérez Patallo E, Weyrauch S, Mahler F, Agbadaola MT, Meister A, Babalola JO, Vargas C, Kolar C, Keller S. A bioinspired glycopolymer for capturing membrane proteins in native-like lipid-bilayer nanodiscs. Nanoscale 14(5):1855-1867.

Orekhov PS, Bozdaganyan ME, Voskoboynikova N, Mulkidjanian AY, Karlova MG, Yudenko A, Remeeva A, Ryzhykau YL, Gushchin I, Gordeliy VI, Sokolova OS, Steinhoff HJ, Kirpichnikov MP, Shaitan KV. Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive ReviewNanomaterials12(3), 361

Pollock NL, Lloyd J, Montinaro C, Rai M, Dafforn TR. Conformational trapping of an ABC transporter in polymer lipid nanoparticles. Biochem J. 479(2):145-159.

Rascol E, A Dufourquet, R Baccouch, P Soule, I Alves, An Original Approach to Measure Ligand/receptor Binding Affinity in Non-purified Samples. ResearchSquare.

Waters R, Understanding the biochemical properties and physiological function of the protein syncollin. Ph.D. thesis.

Trinh TKH, Guo Y, Membrane-active Polymers: NCMNP13-x, NCMNP21-x and NCMNP21b-x for Membrane Protein Structural Biology, bioRxiv.

Qiu W, Guo Y. Analysis of the oligomeric state of mycobacterial membrane protein large 3 and its interaction with SQ109 with native cell membrane nanoparticles system. BBA Biomembr. 1864(1):183793.

Sahoo BR, Souders CL 2nd, Watanabe-Nakayama T, Deng Z, Linton H, Suladze S, Ivanova MI, Reif B, Ando T, Martyniuk CJ, Ramamoorthy A. Conformational Tuning of Amylin by Charged Styrene-Maleic-Acid Copolymers. J Mol Biol. 434(2):167385.

Sych T, Levental KR, Sezgin E. Lipid-Protein Interactions in Plasma Membrane Organization and Function. Annu Rev Biophys. in press.

Karch KR, Snyder DT, Harvey SR, Wysocki VH. Native Mass Spectrometry: Recent Progress and Remaining Challenges. Annu Rev Biophys. in press.

Makowski EK, Schardt JS, Tessier PM. Improving antibody drug development using bionanotechnology. Curr Opin Biotechnol. 74:137-145.

Price ML, Ley CD, Gorvin CM. The emerging role of heterodimerisation and interacting proteins in ghrelin receptor function. J Endocrinol. 252(1):R23-R39.

Ravula T, Ramamoorthy A. Measurement of Residual Dipolar Couplings Using Magnetically Aligned and Flipped Nanodiscs. Langmuir38(1):244-252.

Morrison KA, Doekhie A, Neville, GM, Price GJ, Whitley P, Doutche J, Edler KJ. Ab initio reconstruction of small angle scattering data for membrane proteins in copolymer nanodiscs, BBA Adv 2, 100033.

Kojima K, Sudo Y. Expression of microbial rhodopsins in Escherichia coli and their extraction and purification using styrene-maleic acid copolymers. STAR Protocols 3(1), 101046

Zhang S, Go EP, Ding H, Anang S, Kappes JC, Desaire H, Sodroski J. Analysis of glycosylation and disulfide bonding of wild-type SARS-CoV-2 spike glycoprotein. J Virol.

Günsel U, Hagn F. Lipid Nanodiscs for High-Resolution NMR Studies of Membrane Proteins. Chem Rev. in press.


Gulezian E, Crivello C, Bednenko J, Zafra C, Zhang Y, Colussi P, Hussain S. Membrane protein production and formulation for drug discovery. Trends Pharmacol Sci. 42(8):657-674.

Ratkeviciute G, Cooper BF, Knowles TJ. Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans. ;49(4):1763-1777.

Agasid MT, Robinson CV. Probing membrane protein-lipid interactions. Curr Opin Struct Biol. 69:78-85.

Catalano C, Ben-Hail D, Qiu W, Blount P, des Georges A, Guo Y. Cryo-EM Structure of Mechanosensitive Channel YnaI Using SMA2000: Challenges and Opportunities. Membranes 11(11):849.

Bag S, Ghosh S, Paul S, Khan MEH, De P. Styrene-Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances and Future Perspectives. Macromol Rapid Commun. 42(23):e2100501.

Yuhong C. Establishment of an efficient screening method for potential inhibitors of P-glycoprotein and its in vivo and in vitro evaluation. PhD Thesis

Harwood CR, Sykes DA, Hoare BL, Heydenreich FM, Uddin R, Poyner DR, Briddon SJ, Veprintsev DB. Functional solubilization of the β2-adrenoceptor using diisobutylene maleic acid. iScience. 24(12):103362.

Townsend JA, Sanders HM, Rolland AD, Park CK, Horton NC, Prell JS, Wang J, Marty MT. Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Anal Chem. 93(48):16273-16281.

Mahler F, Meister A, Vargas C, Durand G, Keller S. Self-Assembly of Protein-Containing Lipid-Bilayer Nanodiscs from Small-Molecule Amphiphiles. Small. e2103603.

Bruggisser J, Iacovache I, Musson SC, Degiacomi MT, Posthaus H, Zuber B. Cryo-EM structure of the octameric pore of Clostridium perfringens β-toxin . bioRxiv.

Baeta T, Giandoreggio-Barranco K, Ayala I, Moura ECCM, Sperandeo P, Polissi A, Simorre JP, Laguri C. The lipopolysaccharide-transporter complex LptB2FG also displays adenylate kinase activity in vitro dependent on the binding partners LptC/LptA. J Biol Chem. 297(6):101313.

Morrison KA, Heesom KJ, Edler KJ, Doutch J, Price GJ, Koumanov F, Whitley P. Development of Methodology to Investigate the Surface SMALPome of Mammalian Cells. Front Mol Biosci. 8:780033.

Reid DJ, Rohrbough JG, Kostelic MM, Marty MT. Investigating Antimicrobial Peptide-Membrane Interactions Using Fast Photochemical Oxidation of Peptides in Nanodiscs. J Am Soc Mass Spectrom. 33(1):62-67.

Liang M, Liu D, Nie Y, Liu Y, Qiao X, Exploiting styrene-maleic acid copolymer grafting chromatographic stationary phase materials for separation of membrane lipids, Chin Chem Lett, in press

Castellano S, Structural and mechanistic studies of multidrug resistance efflux pumps in multiple families. PhD thesis.

Nestorow SA, Dafforn TR, Frasca V. Biophysical characterisation of SMALPs. Biochem Soc Trans. 49(5):2037-2050

Dong XQ, Lin JY, Wang PF, Li Y, Wang J, Li B, Liao J, Lu JX. Solid-State NMR Studies of the Succinate-Acetate Permease from Citrobacter Koseri in Liposomes and Native Nanodiscs. Life (Basel). 11(9):908.

Renard K, Byrne B. Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Int J Mol Sci. 22(16):9026.

Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B. A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One. 16(7):e0254118  

Szundi I, Pitch SG, Chen E, Farrens DL, Kliger DS. Styrene-Maleic Acid Copolymer Effects on the Function of the GPCR Rhodopsin in Lipid Nanoparticles. Biophys J. S0006-3495(21)00746-3.

Kopf AH, Lijding O, Elenbaas BO, Koorengevel MC, van Walree CA, Killian JA. Synthesis and Evaluation of a Novel Library of Alternating Amphipathic Copolymers to Solubilize and Study Membrane Proteins, Biomacromolecules 23, 3, 743–759.

Grethen A. Biophysical Characterisation of Polymer-Bounded Nanodiscs as In Vitro Tools for Membrane-Protein Research. PhD Thesis, Technische Universität Kaiserslautern.

Sharma P, Plant M, Lam SK, Chen Q. Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs. BBA Advances 1, 100022.

Islam MS, Gaston JP, Baker MAB. Fluorescence Approaches for Characterizing Ion Channels in Synthetic Bilayers. Membranes 11(11):857. .

Delgado-Vélez M, Quesada O, Villalobos-Santos JC, Maldonado-Hernández R, Asmar-Rovira G, Stevens RC, Lasalde-Dominicci JA. Pursuing High-Resolution Structures of Nicotinic Acetylcholine Receptors: Lessons Learned from Five Decades. Molecules 26(19):5753. 

Li J, Han L, Vallese F, Ding Z, Choi SK, Hong S, Luo Y, Liu B, Chan CK, Tajkhorshid E, Zhu J, Clarke O, Zhang K, Gennis R. Cryo-EM structures of Escherichia coli cytochrome bo3 reveal bound phospholipids and ubiquinone-8 in a dynamic substrate binding site. PNAS USA. 118(34):e2106750118.

Kumar P, Cymes GD, Grosman C. Structure and function at the lipid-protein interface of a pentameric ligand-gated ion channel. PNAS USA 118(23):e2100164118.

Grime RL , Logan RT , Nestorow SA , Sridhar P , Edwards PC , Tate CG , Klumperman B , Dafforn TR , Poyner DR , Reeves PJ , Wheatley M . Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles. Nanoscale. 13(31):13519-13528.

Hawkins OP, Jahromi CPT, Gulamhussein AA, Nestorow S, Bahra T, Shelton C, Owusu-Mensah QK, Mohiddin N, O'Rourke H, Ajmal M, Byrnes K, Khan M, Nahar NN, Lim A, Harris C, Healy H, Hasan SW, Ahmed A, Evans L, Vaitsopoulou A, Akram A, Williams C, Binding J, Thandi RK, Joby A, Guest A, Tariq MZ, Rasool F, Cavanagh L, Kang S, Asparuhov B, Jestin A, Dafforn TR, Simms J, Bill RM, Goddard AD, Rothnie AJ. Membrane protein extraction and purification using partially-esterified SMA polymers. BBA Biomembr. 183758.

Soubias O. Squaring off with G protein-coupled receptors function in polymer nanoscale lipid bilayers. Biophys J. 120(20):4299-4300.

Ravula T, Dai X, Ramamoorthy A. Solid-State NMR Study to Probe the Effects of Divalent Metal Ions (Ca2+ and Mg2+) on the Magnetic Alignment of Polymer-Based Lipid Nanodiscs. Langmuir 37(25):7780-7788.

Farrelly MD, Martin LL, Thang SH. Polymer Nanodiscs and Their Bioanalytical Potential. Chemistry. 2021, in press.

Janson K, Zierath J, Kyrilis FL, Semchonok DA, Hamdi F, Skalidis I, Kopf AH, Das M, Kolar C, Rasche M, Vargas C, Keller S, Kastritis PL, Meister A. Solubilization of artificial mitochondrial membranes by amphiphilic copolymers of different charge. BBA Biomembr. 1863(12):183725.

Tedesco D, Maj M, Malarczyk P, Cingolani A, Zaffagnini M, Wnorowski A, Czapiński J, Benelli T, Mazzoni R, Bartolini M, Jóźwiak K, Application of the SMALP technology to the isolation of GPCRs from low-yielding cell lines, BBA Biomembr. 1863(9):183641.

van Aalst E, Wylie BJ. Cholesterol Is a Dose-Dependent Positive Allosteric Modulator of CCR3 Ligand Affinity and G Protein Coupling. Front Mol Biosci. 8:724603.

Catania R, J Machin, M Rappolt, SP Muench, PA Beales, LJC Jeuken, Detergent-free functionalisation of hybrid vesicles with membrane proteins using SMALPs. ChemRxiv.

Ratkeviciute G, Cooper BF, Knowles TJ. Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans. 49(4):1763-1777.

Majeed S, Ahmad AB, Sehar U, Georgieva ER, Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. Membranes 11(9), 685.

Karlova M, Bagrov D,  Vorobyova M,  Mamatkulov K, Arzumanyan G, Sokolova O.  Raman spectroscopy reveals lipids in protein-containing SMA-stabilized lipodiscs  . Microsc Microanal. 27: S1  

Schmidpeter PAM, Nimigean CM. Correlating ion channel structure and function. Methods Enzymol. 652:3-30.

Ward AE, Ye Y, Schuster JA, Wei S, Barrera FN. Single-molecule fluorescence vistas of how lipids regulate membrane proteins. Biochem Soc Trans. 49 (4): 1685–1694.

Hoffmann M, Haselberger D, Hofmann T, Müller L, Janson K, Meister A, Das M, Vargas C, Keller S, Kastritis PL, Schmidt C, Hinderberger D. Nanoscale Model System for the Human Myelin Sheath. Biomacromolecules. 22(9):3901-3912.

Oot RA, Yao Y, Manolson MF, Wilkens S. Purification of active human vacuolar ATPase in native lipid-containing nanodiscs. J Biol Chem. 297(2): 100964.

Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics. 18(7) 483-502. 

Grime RL, Logan RT, Nestorow SA, Sridhar P, Edwards PC, Tate CG, Klumperman B, Dafforn TR, Poyner DR  Reeves PJ, Wheatley M. Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles. Nanoscale13, 13519-13528.

Jodaitis L, van Oene T, Martens C. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int J Mol Sci. 22(14):7267.

Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci. 30(2):297-315.

Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. Membranes 11(6):451.

Unger L, Ronco-Campaña A, Kitchen P, Bill RM, Rothnie AJ. Biological insights from SMA-extracted proteins. Biochem Soc Trans. 49(3):1349-1359.

Guo Y. Detergent-free systems for structural studies of membrane proteins. Biochem Soc Trans 49 (3): 1361–1374. 

Overduin M,  Kervin TA, Phosphoinositide recognition sites are blocked by metabolite attachmentFront. Cell Dev. Biol. 9:690461.

Dufourc EJ. Bicelles and nanodiscs for biophysical chemistry. BBA Biomembr. 1863(1):183478.

Di Mauro, GM, Lipid-Nanodiscs Formed by Paramagnetic Polymers for Fast NMR Data Acquisition, PhD Thesis   

Pellowe, G, Developing novel methods for co-translational studies of membrane protein folding. PhD Thesis  

Brady NG, Workman CE, Cawthon B, Bruce BD, Long BK. Protein Extraction Efficiency and Selectivity of Esterified Styrene-Maleic Acid Copolymers in Thylakoid Membranes. Biomacromolecules. 22(6) 2544-2553.

Bjørnestad VA, Orwick-Rydmark M, Lund R. Understanding the Structural Pathways for Lipid Nanodisc Formation: How Styrene Maleic Acid Copolymers Induce Membrane Fracture and Disc Formation. Langmuir. 37(20):6178-6188.

Pitch SG, Yao W, Szundi I, Fay J, Chen E, Shumate A, Kliger DS, Farrens DL. Functional Integrity of Membrane Protein Rhodopsin Solubilized by Styrene-Maleic Acid Copolymer. Biophys J. 120(16): 3508-3515.

Sahu ID, Lorigan, GA. Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. Biophysica 1(2), 106-125

Kjølbye LR, De Maria L, Wassenaar TA, Abdizadeh H, Marrink SJ, Ferkinghoff-Borg J, Schiøtt B. General Protocol for Constructing Molecular Models of Nanodiscs. J Chem Inf Model. 61, 6, 2869–2883

Ravula T, Ramamoorthy A. Synthesis, Characterization, and Nanodisc formation of Non-ionic Polymers. Angew Chem 133(31) 17022-5.

Caveney NA, Workman SD, Yan R, Atkinson CE, Yu Z, Strynadka NCJ. CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution. Nat Commun. 12(1):2775.

Melville Z, Kim K, Clarke O, Marks AR. High Resolution Structure of the Membrane Embedded Skeletal Muscle Ryanodine Receptor. Structure 30(1):172-180.

Kervin TA, Overduin M.  Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers, Cells 10(5): 1205.

Klenotic PA, Morgan CE, Yu EW. Cryo-EM as a tool to study bacterial efflux systems and the membrane proteome. Fac Rev. 10:24.

Trinh TKH, Qiu W, Thornton M, Carpenter EE, Guo Y. A property fine-tuned sulfobetaine cholesterol derivative for membrane protein structural biology. BBA Gen Subj. 1865(7):129908.

Takano S, Islam W, Fujii S, Maeda H, Sakura K, Weak Interplay Between Hydrophobic Part of Water-Soluble Polymers and Serum Protein. Chem Lett. 50(7).

Errasti-Murugarren E, Bartoccioni P, Palacín M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. Membranes. 11(2):155.

Zhang M, Gui M, Wang ZF, Gorgulla C, Yu JJ, Wu H, Sun ZJ, Klenk C, Merklinger L, Morstein L, Hagn F, Plückthun A, Brown A, Nasr ML, Wagner G. Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nat Struct Mol Biol. 28(3):258-267.

Deng YN, Kashtoh H, Wang Q, Zhen GX, Li QY, Tang LH, Gao HL, Zhang CR, Qin L, Su M, Li F, Huang XH, Wang YC, Xie Q, Clarke OB, Hendrickson WA, Chen YH. Structure and activity of SLAC1 channels for stomatal signaling in leaves. PNAS USA 118(18):e2015151118.

Molodenskiy DS, Svergun DI, Mertens HDT. MPBuilder: A PyMOL Plugin for Building and Refinement of Solubilized Membrane Proteins Against Small Angle X-ray Scattering Data. J Mol Biol. 433, 166888.

Hoffmann M, Eisermann J, Schöffmann FA, Das M, Vargas C, Keller S, Hinderberger D, Influence of Different Polymer Belts on Lipid Properties in Nanodiscs Characterized by CW EPR Spectroscopy. BBA Biomembr. 1863(10):183681. 

Brown CJ, Trieber C, Overduin M, Structural biology of endogenous membrane protein assemblies in native nanodiscs, Curr Opin Struct Biol 69, 70-77

Voskoboynikova N, Margheritis EG, Kodde F, Rademacher M, Schowe M, Budke-Gieseking A, Psathaki OE, Steinhoff HJ, Cosentino K. Evaluation of DIBMA nanoparticles of variable size and anionic lipid content as tools for the structural and functional study of membrane proteins. BBA Biomembr. 1863(6):183588.

Kurgan KW, Chen B, Brown KA, Cobra PF, Ye X, Ge Y, Gellman SH. Stable Picodisc Assemblies from Saposin Proteins and Branched Detergents. Biochemistry. 60:1108-1119.

Guo R, Sumner J, Qian S. Structure of Diisobutylene Maleic Acid Copolymer (DIBMA) and Its Lipid Particle as a “Stealth” Membrane-Mimetic for Membrane Protein Research, ACS Appl. Bio Mater. 4, 4760–4768

Yang L, Catalano C, Xu Y, Qiu W, Zhang D, McDermott A, Guo Y, Blount. A native cell membrane nanoparticles system allows for high-quality functional proteoliposome reconstitution. BBA Advances 1, 100011

Hoi KK, Bada Juarez JF, Judge PJ, Yen HY, Wu D, Vinals J, Taylor GF, Watts A, Robinson CV. Detergent-free Lipodisq Nanoparticles Facilitate High-Resolution Mass Spectrometry of Folded Integral Membrane Proteins. Nano Lett. 21, 2824-31.

Voskoboynikova N, Orekhov P, Bozdaganyan M, Kodde F, Rademacher M, Schowe M, Budke-Gieseking A, Brickwedde B, Psathaki OE, Mulkidjanian AY, Cosentino K, Shaitan KV, Steinhoff HJ. Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II. Int J Mol Sci. 22(5):2548.

Dilworth MV, Findlay HE, Booth PJ. Detergent-free purification and reconstitution of functional human serotonin transporter (SERT) using diisobutylene maleic acid (DIBMA) copolymer. BBA Biomembr 1863(7) :183602.

Yu J, Zhu H, Lape R, Greiner T, Du J, Lü W, Sivilotti L, Gouaux E. Mechanism of gating and partial agonist action in the glycine receptor. Cell 84(4):957-968.

Di Mauro GM, La Rosa C, Condorelli M, Ramamoorthy A. Benchmarks of SMA-Copolymer Derivatives and Nanodisc Integrity. Langmuir 37:3113-3121.

Higgins A, Flynn A, Marconnet A, Musgrove L, Postis V, Lippiat J, Chung C, Ceska T, Zoonens M, Sobott F, Muench S. Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis, Research Square

Overduin M, Wille H, Westaway D. Multisite Interactions of Prions with Membranes and Native Nanodiscs. Chem Phys Lipids 105063.

Barniol-Xicota M, Verhelst SHL. Lipidomic and in-gel analysis of maleic acid co-polymer nanodiscs reveals differences in composition of solubilized membranes. Commun Biol 4(1):218.

Eisermann J, Hoffmann M, Schöffmann FA, Das M, Vargas C, Keller S, Hinderberger D. Molecular-level interactions of nanodisc-forming copolymers dissected by EPR spectroscopy, Macromol Chem Phys 222, 2100051.

Choy BC, Cater RJ, Mancia F, Pryor EE Jr. A 10-year meta-analysis of membrane protein structural biology: Detergents, membrane mimetics, and structure determination techniques. BBA Biomembr. 1863(3):183533.

Korotych OI, Nguyen TT, Reagan BC, Burch-Smith TM, Bruce BD. Poly(styrene-co-maleic acid)-mediated isolation of supramolecular membrane protein complexes from plant thylakoids. BBA Bioenerg. 1862(3):148347.

Marty MT. Illuminating Individual Membrane Protein Complexes with Mass Photometry, Chem 7(1): 16-17

Voskoboynikova N, Karlova M, Kurre, Mulkidjanian AY, Shaitan KV, Sokolova OS, Steinhoff HJ, Heinisch JJ. A Three-Dimensional Model of the Yeast Transmembrane Sensor Wsc1 Obtained by SMA-Based Detergent-Free Purification and Transmission Electron Microscopy, J Fungi 7(2): 118

Zampieri V, Gobet A, Robert X, Falson P, Chaptal V, CryoEM reconstructions of membrane proteins solved in several amphipathic solvents, nanodisc, amphipol and detergents, yield amphipathic belts of similar sizes corresponding to a common ordered solvent layer, BBA Biomembranes 1863(11) 183693

Kemmerer ZA, Robinson KP, Schmitz JM, Paulson BR, Jochem A, Hutchins PD, Coon JJ, Pagliarini DJ, UbiB proteins regulate cellular CoQ distribution, Nat Commun. 12(1):4769.

Krajewska M, Koprowski P. Solubilization, purification, and functional reconstitution of human ROMK potassium channel in copolymer styrene-maleic acid (SMA) nanodiscs. BBA Biomembr. 863(4):183555

Sander CL, Sears AE, Pinto AFM, Choi EH, Kahremany S, Jin H, Pardon E, Suh S, Dong Z, Steyaert J, Saghatelian A, Skowronska-Krawczyk D, Kiser PD, Palczewski K.;Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 220 (8): e202101063.

Ravula T, Ramamoorthy A. Synthesis, Characterization, and Nanodisc formation of Non-ionic Polymers.Angew Chem Int Ed Engl 60(31) 16885.

Bednenko J, Colussi P, Hussain S, Zhang Y, Clark T. Therapeutic Antibodies Targeting Potassium Ion Channels. Handb Exp Pharmacol. 267:507-545.

Bartels K, Lasitza-Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem. 22(17):2657-2671.

Esmaili M, Eldeeb MA, Moosavi-Movahedi AA, Current Developments in Native Nanometric Discoidal Membrane Bilayer Formed by Amphipathic PolymersNanomaterials 11(7), 1771.

Kampjut D, Steiner J, Sazanov LA. Cryo-EM grid optimization for membrane proteins. iScience. 24(3):102139.

Johnson MC, Uddin YM, Neselu K, Schmidt-Krey I. 2D Electron Crystallography of Membrane Protein Single-, Double-, and Multi-Layered Ordered Arrays. Methods Mol Biol. 2215:227-245.

Ball LE, Riley LJ, Hadasha W, Pfukwa R, Smith CJI, Dafforn TR, Klumperman B. Influence of DIBMA Polymer Length on Lipid Nanodisc Formation and Membrane Protein Extraction. Biomacromolecules. 22(2) 763-772.


Bahman F, Taurin S, Altayeb D, Taha S, Bakhiet M, Greish K. Oral Insulin Delivery Using Poly (Styrene Co-Maleic Acid) Micelles in a Diabetic Mouse Model. Pharmaceutics. 12(11):1026.

Chen A, Majdinasab EJ, Fiori MC, Liang H, Altenberg GA. Polymer-Encased Nanodiscs and Polymer Nanodiscs: New Platforms for Membrane Protein Research and Applications. Front Bioeng Biotechnol. 8:598450.

Jakubec M, Bariås E, Furse S, Govasli ML, George V, Turcu D, Iashchishyn IA, Morozova-Roche LA, Halskau Ø. Cholesterol-containing lipid nanodiscs promote an α-synuclein binding mode that accelerates oligomerization. FEBS J 288(6):1887-1905. 

Harvey SR , VanAernum ZL , Kostelic MM , Marty MT , Wysocki VH . Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry. Chem Commun (Camb) 56(100):15651-15654.

Thoma J, Burmann BM. Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci. 22(1):E50.

Chen A, Majdinasab EJ, Fiori MC, Liang H, Altenberg GA. Polymer-Encased Nanodiscs and Polymer Nanodiscs: New Platforms for Membrane Protein Research and ApplicationsFront. Bioeng. Biotechnol. 8, 598450

Stefanski KM, Russell CM, Westerfield JM, Lamichhane R, Barrera FN. PIP2 promotes conformation-specific dimerization of the EphA2 membrane region. J Biol Chem, 296:100149.

Flegler VJ, Rasmussen A, Rao S, Wu N, Zenobi R, Sansom MSP, Hedrich R, Rasmussen T, Böttcher B. The MscS-like channel YnaI has a gating mechanism based on flexible pore helices. PNAS USA. 117(46):28754-2876 .

Korotych OI, Nguyen TT, Reagan BC, Burch-Smith TM, Bruce BD. Poly(styrene-co-maleic acid)-mediated isolation of supramolecular membrane protein complexes from plant thylakoids. BBA Bioenerg. 148347.

Lavington S, Watts A. Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Biophys Rev. 12(6): 1287-1302. 

Reis RI, Moraes I. Probing Membrane Protein Assembly into Nanodiscs by In Situ Dynamic Light Scattering: A2A Receptor as a Case Study. Biology (Basel). 9(11): 400.

Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. Int J Mass Spectrom. 458:116436

Olerinyova A, Sonn-Segev A, Gault J, Eichmann C, Schimpf J, Kopf AH, Rudden LSP, Ashkinadze D, Bomba R, Greenwald J, Degiacomi MT, Killian A, Friedrich T, Riek RR, Struwe WB, Kukura P, Mass Photometry of Membrane Proteins, bioRxiv.

Ueta T, Kojima K, Hino T, Shibata M, Nagano S, Sudo Y. Applicability of Styrene-Maleic Acid Copolymer for Two Microbial Rhodopsins, RxR and HsSRI. Biophys J. S0006-3495(20)30737-2.

Bernhard M, Laube B. Thermophoretic analysis of ligand-specific conformational states of the inhibitory glycine receptor embedded in copolymer nanodiscs. Sci Rep. 10(1):16569.

Overduin M, Esmaili M. Functional derivatives of maleimide copolymers for nanodisc production. PCT/US20/57069

de Jonge PA, Smit Sibinga DJC, Boright OA, Costa AR, Nobrega FL, Brouns SJJ, Dutilh BE. Development of styrene maleic acid lipid particles (SMALPs) as a tool for studies of phage-host interactions. J Virol. 94(23): e01559-20.

Schachter I, Allolio C, Khelashvili G, Harries D. Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties. J Phys Chem B. 124(33):7166-7175.

Ravula T, Sahoo BR, Dai X, Ramamoorthy A. Natural-abundance 17O NMR spectroscopy of magnetically aligned lipid nanodiscs. Chem Commun. 56(69):9998-10001.

Medina-Carmona E , Varela L , Hendry AC , Thompson GS , White LJ , Boles JE , Hiscock JR , Ortega-Roldan JL . A quantitative assay to study the lipid selectivity of membrane-associated systems using solution NMR. Chem Commun. 56(78):11665-11668.

Smith AAA, HE Autzen, B Faust, JL Mann, BW Muir, Howard S, Postma A, Spakowitz AJ, Cheng Y, Appel EA, Lipid Nanodiscs via Ordered Copolymers, Chem. 6(10) 2782-2795

Harwood C, Sykes DA, Hoare B, Heydenreich FM, Uddin R, Poyner DR, Briddon SJ, Veprintsev DB, Functional Solubilisation of the Β2-Adrenoceptor (Β 2AR) Using Diisobutylene Maleic Acid (DIBMA). iScience

Hothersall JD, Jones AY, Dafforn TR, Perrior T, Chapman KL. Releasing the technical 'shackles' on GPCR drug discovery: opportunities enabled by detergent-free polymer lipid particle (PoLiPa) purification. Drug Discov Today. S1359-6446(20)30337-8.

Hardin N. Synthesis and Characterization of Polymers, and Development of Polymer Based Lipid-Nanodiscs. PhD thesis.

Centola G, Deredge DJ, Hom K, Ai Y, Dent AT, Xue F, Wilks A. Gallium(III)-Salophen as a Dual Inhibitor of Pseudomonas aeruginosa Heme Sensing and Iron AcquisitionACS Infect Dis2020;6(8):2073-2085.

Hrmova M, Gilliham M, Tyerman SD. Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochem Soc Trans 48(4): 1683–1696.

Lemieux MJ, Overduin M. Structure and function of proteins in membranes and nanodiscs. BBA Biomembr1863(1): 183445.

Lavington S, Watts A. Detergent-free solubilisation & purification of a G protein coupled receptor using a polymethacrylate polymer, BBA Biomembr 1863(1):183441.

Esmaili M, Brown CJ, Shaykhutdinov R, Acevedo-Morantes C, Wang YL, Wille H, Gandour RD, Turner SR, Overduin M. Homogeneous nanodiscs of native membranes formed by stilbene-maleic-acid copolymers. Nanoscale. 12(32):16705-16709.

Ayub H, Clare M, Milic I, Chmel NP, Böning H, Devitt A, Krey T, Bill RM, Rothnie AJ. CD81 extracted in SMALP nanodiscs comprises two distinct protein populations within a lipid environment enriched with negatively charged headgroups. BBA Biomembr183419.

Cunningham RD, Kopf AH, Elenbaas BOW, Staal BBP, Pfukwa R, Killian JA, Klumperman B. Iterative RAFT-Mediated Copolymerization of Styrene and Maleic Anhydride toward Sequence- and Length-Controlled Copolymers and Their Applications for Solubilizing Lipid Membranes. Biomacromolecules 21(8):3287-3300.

Marconnet A, Michon B, Le Bon C, Giusti F, Tribet C, Zoonens M. Solubilization and Stabilization of Membrane Proteins by Cycloalkane-Modified Amphiphilic Polymers. Biomacromolecules 21(8):3459-3467.

Johnson RM, Fais C, Parmar M, Cheruvara H, Marshall RL, Hesketh SJ, Feasey MC, Ruggerone P, Vargiu AV, Postis VLG, Muench SP, Bavro VN. Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella. Microorganisms 8(6):943.

Cleary SP , Prell JS . Distinct classes of multi-subunit heterogeneity: analysis using Fourier Transform methods and native mass spectrometry. Analyst145(13):4688-4697.

Pellowe GA, Findlay HE, Lee K, Gemeinhardt TM, Blackholly LR, Reading E, Booth PJ. Capturing membrane protein ribosome nascent-chain complexes in a native-like environment for co-translational studies. Biochemistry. 59(30):2764-2775.

Torgersen ML , Judge PJ, Juarez JFB, Pandy AD, Fusser M, Davies CW, Maciejewska MK, Yin DJ, Mælandsmo GM, Skotland T, Watts A, Sandvig K. Physicochemical characterization, toxicity and in vivo biodistribution studies of a discoidal, lipid-based drug delivery vehicle: Lipodisq nanoparticles containing doxorubicin. J Biomed Nanotechnol. 16(4):419-431.

Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020, 10(5), 763

Fiori MC, Zheng W, Kamilar E, Simiyu G, Altenberg GA, Liang H. Extraction and reconstitution of membrane proteins into lipid nanodiscs encased by zwitterionic styrene-maleic amide copolymers. Sci Rep. 10(1):9940.

Krishnarjuna B, Ravula T , Ramamoorthy A . Detergent-free extraction, reconstitution and characterization of membrane-anchored cytochrome-b5 in native lipids. Chem Commun. 56(48):6511-6514.

Olerinyova A, Sonn-Segev A, Gault J, Eichmann C, Schimpf J, Kopf AH, Rudden LSP, Ashkinadze D, Bomba R, Greenwald J, Degiacomi MT, Killian JA, Friedrich T, Riek R, Struwe WB, Kukura P. Mass Photometry of Membrane Proteins, bioRxiv.

Dodd R, Schofield DJ, Wilkinson T, Britton ZT. Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods. S1046-2023(19)30296-8.

Pellowe GA, Booth PJ. Structural insight into co-translational membrane protein folding. BBA Biomembr. 1862(1):183019.

Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int J Biol Macromol. 151:136-158.

Raltchev KP. NMR structural studies of full-length Bcl-xL in nanodiscs, PhD thesis.

Adão R, Cruz PF, Vaz DC, Fonseca F, Pedersen JN, Ferreira-da-Silva F, Brito RMM, Ramos CHI, Otzen D, Keller S, Bastos M. DIBMA nanodiscs keep α-synuclein folded. BBA Biomembr. 1862(9):183314.

Esmaili M, Acevedo-Morantes C, Wille H, Overduin M. The effect of hydrophobic alkyl sidechains on size and solution behaviors of nanodiscs formed by alternating styrene maleamic copolymer. BBA Biomembr. 1862(10):183360.

Yoder N, Gouaux E. Conserved His-Gly motif of acid-sensing ion channels resides in a reentrant ‘loop’ implicated in gating and ion selectivity, Elife 9:e56527.

Grime RL, Goulding J, Uddin R, Stoddart LA, Hill SJ, Poyner DR, Briddon SJ, Wheatley M. Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles. Nanoscale. 12(21):11518-11525

Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BBA Biomembr. 1862(9):183332

Danielczak B, Keller S. Lipid Exchange among Polymer-Encapsulated Nanodiscs by Time-Resolved Förster Resonance Energy Transfer Methods. 180:27-34.

Park SH, Wu J, Yao Y, Singh C, Tian Y, Marassi FM, Opella SJ. Membrane proteins in magnetically aligned phospholipid polymer discs for solid-state NMR spectroscopy. BBA Biomembr. 1862(9):183333.

Esmaili M, Tancowny BP, Wang X, Moses A, Cortez L, Sim V, Wille H, Overduin M. Native nanodiscs formed by styrene-maleic acid copolymer derivatives help recover infectious prion multimers bound to brain-derived lipidsJ Biol Chem. 295(25):8460-8469.

Hall SCL, Clifton LA, Tognoloni C, Morrison KA, Knowles TJ, Kinane CJ, Dafforn TR, Edler KJ, Arnold T. Adsorption of a styrene maleic acid (SMA) copolymer-stabilized phospholipid nanodisc on a solid-supported planar lipid bilayer. J Colloid Interface Sci. 574:272‐284.

van't Klooster JS, Cheng TY, Sikkema HR, Jeucken A, Moody B, Poolman B. Periprotein lipidomes of Saccharomyces cerevisiae provide a flexible environment for conformational changes of membrane proteinsElife. 9:e57003.

Angiulli G, Dhupar HS, Suzuki H, Wason IS, Duong Van Hoa F, Walz T. New approach for membrane protein reconstitution into peptidiscs and basis for their adaptability to different proteinsElife. 9:e53530.

Lloris-Garcerá P, Klinter S, Chen L, Skynner MJ, Löving R, Frauenfeld J. DirectMX - One-Step Reconstitution of Membrane Proteins From Crude Cell Membranes Into Salipro NanoparticleFront Bioeng Biotechnol: 8:215

Gulamhussein AA, Uddin R, Tighe BJ, Poyner DR, Rothnie AJ. A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification. BBA Biomembr. 1862(7):183281.

Tanaka M, Miyake H, Oka S, Maeda S, Iwasaki K, Mukai T. Effects of charged lipids on the physicochemical and biological properties of lipid-styrene maleic acid copolymer discoidal particlesBBA Biomembr. 1862(5):183209.

Phan MD, Korotych OI, Brady NG, Davis MM, Satija SK, Ankner JF, Bruce BD. X-ray and Neutron Reflectivity Studies of Styrene-Maleic Acid Copolymer Interactions with Galactolipid-Containing Monolayers. Langmuir. 36, 14, 3970–3980

Campuzano IDG, Nshanian M, Spahr C, Lantz C, Netirojjanakul C, Li H, Wongkongkathep P, Wolff JJ, Loo JA. High Mass Analysis with a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: From Inorganic Salt Clusters to Antibody Conjugates and Beyond. J Am Soc Mass Spectrom. 31, 5, 1155–1162.

Sahu ID, Dixit G, Reynolds WD, Kaplevatsky R, Harding BD, Jaycox CK, McCarrick RM, Lorigan GA. Characterization of the Human KCNQ1 Voltage Sensing Domain (VSD) in Lipodisq Nanoparticles for Electron Paramagnetic Resonance (EPR) Spectroscopic Studies of Membrane Proteins. J Phys Chem B. 124, 12, 2331–2342.

Barniol-Xicota M., and Verhelst, SHL. Comparative analysis of maleic acid copolymer-based lipid nanodiscs reveals preferential lipid and protein solubilization, chemRxiv.

Nakatani Y, Shimaki Y, Dutta D, Muench SP, Ireton K, Cook GM, Jeuken LJC. Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform. J Am Chem Soc. 142(3):1311-1320.

Burridge KM, Harding BD, Sahu ID, Kearns MM, Stowe RB, Dolan MT, Edelmann RE, Dabney-Smith C, Page RC, Konkolewicz D, Lorigan GA. Simple Derivatization of RAFT-Synthesized Styrene-Maleic Anhydride Copolymers for Lipid Disk Formulations. Biomacromolecules 21, 3, 1274-1284.

Routledge SJ, Jamshad M, Little HA, Lin YP, Simms J, Thakker A, Spickett CM, Bill RM, Dafforn TR, Poyner DR,Wheatley M. Ligand-induced conformational changes in a SMALP-encapsulated GPCR. BBA Biomembr. 1862(6):183235.

Tascón I, Sousa JS, Corey RA, Mills DJ, Griwatz D, Aumüller N, Mikusevic V, Stansfeld PJ, Vonck J, Hänelt I. Structural basis of proton-coupled potassium transport in the KUP family. Nat Commun. 11(1):626

Tanaka K, Prendergast A, Hintzen J, Kumar A, Chung M, Koleske, A Crawford, J Nicoli S, Schwartz MA. Latrophilins are essential for endothelial junctional fluid shear stress mechanotransduction, bioRxiv.

Guo, Y. Be Cautious with Crystal Structures of Membrane Proteins or Complexes Prepared in Detergents. Crystals 10(2), 86.

Azouz M, Gonin M, Fiedler S, Faherty J, Decossas M, Cullin C, Villette S, Lafleur M, Alves ID, Lecomte S, Ciaccafava A. Microfluidic diffusional sizing probes lipid nanodiscs formation. BBA Biomembr. 1862(6):183215.

Horsey AJ, Briggs DA, Holliday ND, Briddon SJ, Kerr ID. Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. BBA Biomembr. 1862(6) 183218.

Ravula T, Kim J, Lee DK, Ramamoorthy A. Magnetic Alignment of Polymer Nanodiscs Probed by Solid-State NMR Spectroscopy. Langmuir, 36, 5, 1258–1265

Tanaka M, Miyake H, Oka S, Maeda S, Iwasaki K, Mukai T. Effects of charged lipids on the physicochemical and biological properties of lipid-styrene maleic acid copolymer discoidal particles. BBA Biomembr. 1862(5): 183209

Errey JC, Fiez-Vandal C. Production of membrane proteins in industry: The example of GPCRs. Protein Expr Purif. 169:105569.

Colbasevici A, Voskoboynikova N, Orekhov PS, Bozdaganyan ME, Karlova MG, Sokolova OS, Klare JP, Mulkidjaniana A, Shaitan KV, Steinhoff HJ. Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations, BBA Biomembr, 1862(5):183207

Barniol-Xicota M, Verhelst SH, Isolation of intramembrane proteases in membrane-like environments, BBA Biomemb1862(4):183193

Hesketh SJ, Klebl DP, Thomsen M, Higgins AJ, Pickles IB, Sobott F, Sivaprasadarao A, Postis VL, Muench SP, Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation, BBA Biomembr, 1862(5) 183192

Bai J, Wang J, Ravula T, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A, Expression, Purification, and Functional Reconstitution of 19F-labeled Cytochrome b5 in Peptide Nanodiscs for NMR Studies, BBA Biomembr, 1862(5):183194

Hernando M, Orris G, Perodeau J, Lei S, Farens, F, Patel T, Stetefeld J, Nieuwkoop AJ, O'Neil J. Solution Structure and Oligomeric State of the E. coli Glycerol Facilitator, BBA Biomembr. 1862(5) 183191

Beriashvili D, Spencer NR, Dieckmann T, Overduin M, Palmer M, Characterization of multimeric daptomycin bound to lipid nanodiscs formed by calcium-tolerant styrene-maleic acid copolymer, BBA Biomembr, 862(6):183234

Dutta D, Esmaili M, Overduin M, Fliegel L. Expression and detergent free purification and reconstitution of the plant plasma membrane Na(+)/H(+) antiporter SOS1 overexpressed in Pichia pastoris. BBA Biomembr.1862(3):183111.

Juarez JFB, Muñoz-García JC, Dos Reis RI, Henry A, McMillan D, Kriek M, Wood M, Vandenplas C, Sands Z, Castro L, Taylor R, Watts A. Detergent-free extraction of a functional low-expressing GPCR from a human cell line. BBA Biomembr. 1862(3):183152

Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, de Groot HJM, Kennis JTM, de Grip WJ. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. BBA Biomembr1862(2):183113.

Kopf AH, Dörr JM, Koorengevel MC, Antoniciello F, Jahn H, Killian JA. Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene-maleic acid copolymers. BBA Biomembr. 1862(2):183125.

Desrames A, Genetet S, Delcourt MP, Goossens D, Mouro-Chanteloup I. Detergent-free isolation of native red blood cell membrane complexes. BBA Biomembr1862(2):183126.

Swiecicki JM, Santana JT, Imperiali B. A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Cell Chem Biol. pii: S2451-9456(19)30390-3.

Haffke M, Duckely M, Bergsdorf C, Jaakolac VP, Shresth B, Development of a biochemical and biophysical suite for integral membrane protein targets: A review, Protein Expr Purif, 167, 105545.

Saourosa S, Cecchettia C, Jones A, Cameron AD, Byrne B, Strategies for successful isolation of a eukaryotic transporter, Protein Expr Purif, 167, 105545.

Gakhar S, Risbud SH, Longo ML. Structure retention of silica gel-encapsulated bacteriorhodopsin in purple membrane and in lipid nanodiscs. Colloids Surf B Biointerfaces. 186:110680

Wiseman DN, Otchere A, Patel JH, Uddin R, Pollock NL, Routledge SJ, Rothnie AJ, Slack C, Poyner DR, Bill RM, Goddard AD. Expression and purification of recombinant G protein-coupled receptors: A review. Protein Expr Purif.167, 105524.

Cherepanov DA, Brady NG, Shelaev IV, Nguyen J, Gostev FE, Mamedov MD, Nadtochenko VA, Bruce BD. PSI-SMALP, a detergent-free cyanobacterial photosystem I reveals faster femtosecond photochemistry. Biophys J. 118(2):337-351. 


Scalise M, Jaakola VP. Membrane Proteins: New Approaches to Probes, Technologies, and Drug Design. SLAS Discov. 24(9):865-866.

Hardy D, Bill RM, Rothnie AJ, Jawhari A. Stabilization of Human Multidrug Resistance Protein 4 (MRP4/ABCC4) Using Novel Solubilization Agents. SLAS Discov. 24(10):1009-1017.

Overduin M, Esmaili M. Structures and Interactions of Transmembrane Targets in Native Nanodiscs. SLAS Discovery. 24(10):943-952.

Chill JH, Qasim A, Sher I, Gross R. NMR Perspectives of the KcsA Potassium Channel in the Membrane Environment. Isr. J. Chem.59, 1001–1013.

Lee SC, Collins R, Lin YP, Jamshad M, Broughton C, Harris SA, Hanson BS, Tognoloni C, Parslow RA, Terry AE, Rodger A, Smith CJ, Edler KJ, Ford R, Roper DI, Dafforn TR. Nano-encapsulated Escherichia coli Divisome Anchor ZipA, and in Complex with FtsZ. Sci Rep 9(1):18712.

Smith AJ, Wright KE, Muench SP, Schumann S, Whitehouse A, Porter KE, Colyer J. Styrene maleic acid recovers proteins from mammalian cells and tissues while avoiding significant cell death. Sci Rep. 9(1):16408.

Bibow S. Opportunities and Challenges of Backbone, Sidechain, and RDC Experiments to Study Membrane Protein Dynamics in a Detergent-Free Lipid Environment Using Solution State NMR. Front Mol Biosci. 6:103.

Bibow S. Opportunities and Challenges of Backbone, Sidechain, and RDC Experiments to Study Membrane Protein Dynamics in a Detergent-Free Lipid Environment Using Solution State NMR. Front Mol Biosci. 6:103.

Entova S, Guan Z, Imperiali B. Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates. Arch Biochem Biophys. 675:108111.

Brady NG, Li M, Ma Y, Gumbart JC, Bruce BD. Non-detergent isolation of a cyanobacterial photosystem I using styrene maleic acid alternating copolymers. RSC Adv 9, 31781-31796.

Orwick Rydmark M, Christensen MK, Köksal ES, Kantarci I, Kustanovich K, Yantchev V, Jesorka A, Gözen I. Styrene maleic acid copolymer induces pores in biomembranes. Soft Matter. 15(39):7934-7944.

Hardin NZ, Kocman V, Di Mauro GM, Ravula T, Ramamoorthy A. Metal-Chelated Polymer Nanodiscs for NMR Studies. Angew Chem Int Ed Engl. 58(48):17246-17250.

Sarkar K, Joedicke L, Westwood M, Burnley R, Wright M, McMillan D, Byrne B. Modulation of PTH1R signaling by an ECD binding antibody results in inhibition of β-arrestin 2 coupling. Sci Rep. 9(1):14432.

Autzen HE, Julius D, Cheng Y. Membrane mimetic systems in CryoEM: keeping membrane proteins in their native environment. Curr Opin Struct Biol. 58:259-268.

Puthenveetil R, Vinogradova O. Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J Biol Chem. 294(44):15914-15931.

Zhang Q, Cherezov V. Chemical tools for membrane protein structural biology. Curr Opin Struct Biol. 58:278-285.

R Cunningham, A Kopf, R Pfukwa, B Klumperman. Synthesis of non-alternating styrene-maleic anhydride (smanh) copolymers via raft polymerisation–investigating the efficiency of styrene-maleic acid lipid particle (smalp) formation. 13th International Conference on Advanced Polymers via Macromolecular Engineering.

Reading E. Assessing Membrane Protein Structural Dynamics within Lipid Nanodiscs. Trends Biochem Sci. 141(2): 1054-61

Shelby ML, He W, Dang AT, Kuhl TL, Coleman MA. Cell-Free Co-Translational Approaches for Producing Mammalian Receptors: Expanding the Cell-Free Expression Toolbox Using Nanolipoproteins. Front Pharmacol. 10:744.

Voskoboynikova, N., Karlova, M., Kurre, R., Heinisch, J., Steinhoff, H., Shaitan, K., & Sokolova, O. (2019). SMA-based Extraction of the Yeast Cell Wall Integrity Sensor Mid2 from Native Membranes of Saccharomyces cerevisiae – Electron Microscopy Study. Microsc Microanal, 25(S2), 1338-1339.

Almeida-Hernandez Y, Tidow H. Soluble Regions of GlpG Influence Protein–Lipid Interactions and Lipid Distribution. J. Phys. Chem. B 123(37)7852-7858.

Su CC, Morgan CE, Kambakam S, Rajavel M, Scott H, Huang W, Emerson CC, Taylor DJ, Stewart PL, Bonomo RA, Yu EW. Cryo-Electron Microscopy Structure of an Acinetobacter baumannii Multidrug Efflux Pump. MBio. 10(4).

Horsey, Aaron J. (2019) Analysis of ABCG2 pharmacology and oligomerisation by solution based fluorescence correlation spectroscopy. PhD thesis, University of Nottingham.

Roxlau TR, Investigation of the lipid environment of the mammalian transamidase complex, PhD Thesis Heidelberg University

Obata T. Metabolons in plant primary and secondary metabolism, Phytochemistry Reviews. Phytochem Rev, 18(6) 1483–1507

Kostelic MM, Ryan AM, Reid DJ, Noun JM, Marty MT. Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes. J Am Soc Mass Spectrom. 30(8):1416-1425

Kehlenbeck DM, Josts I, Nitsche J, Busch S, Forsyth VT, Tidow H. Comparison of lipidic carrier systems for integral membrane proteins - MsbA as case study. Biol Chem, 400(11):1509-1518.

Redhair M, Clouser AF, Atkins WM. Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs. Chem Phys Lipids. 220:14-22

Pollock NL, Rai M, Simon KS, Hesketh SJ, Teo ACK, Parmar M, Sridhar P, Collins R, Lee SC, Stroud ZN, Bakker SE, Muench SP, Barton CH, Hurlbut G, Roper DI, Smith CJI, Knowles TJ, Spickett CM, East JM, Postis V, Dafforn TR. SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. BBA Biomembr. 1861(8):1437-1445.

Bada Juarez JF, O'Rourke D, Judge PJ, Liu LC, Hodgkin J, Watts A. Lipodisqs for eukaryote lipidomics with retention of viability: Sensitivity and resistance to Leucobacter infection linked to C.elegans cuticle composition. Chem Phys Lipids. 222:51-58

Overduin M, Esmaili M. Native Nanodiscs and the Convergence of Lipidomics, Metabolomics, Interactomics and Proteomics. Appl. Sci. 2019, 9(6), 1230.

Ognjenović J, Grisshammer R, Subramaniam S. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Annu Rev Biomed Eng. 21: 395-415.

M Yokogawa, M Fukuda, M Osawa Nanodiscs for Structural Biology in a Membranous Environment. Chem Pharm Bull. 67 321-326.

Á Deák, D Sebők, E Csapó, A Bérczi, I Dékány, Zimányi L, Janovák L. Evaluation of pH-responsive poly (styrene-co-maleic acid) copolymer nanoparticles for the encapsulation and pH-dependent release of ketoprofen and and tocopherol model drugs. Eur Polymer J. 114, 361-368

Pinwanich P, Soisungval, A.Structural Modification of Styrene Maleic Anhydride Copolymers for Plant Bioactive Compound Extraction, Key Engineering Materials 798, 351-357.

Sahoo BR, Genjo T, Moharana KC, Ramamoorthy A. Self-Assembly of Polymer-Encased Lipid Nanodiscs and Membrane Protein Reconstitution. J Phys Chem B. 123: 4562-4570.

Hortigüela V, Larrañaga E, Lagunas A, Acosta GA, Albericio F, Andilla J, Loza-Alvarez P, Martínez E. Large -Area Biomolecule Nanopatterns on Diblock Copolymer Surfaces for Cell Adhesion Studies. Nanomaterials (Basel). 9(4). pii: E579

Sun C, Gennis RB. Single-particle cryo-EM studies of transmembrane proteins in SMA copolymer nanodiscs. Chem Phys Lipids. 221:114-119

Mosslehy W, Voskoboynikova N, Colbasevici A, Ricke A, Klose D, Klare JP, Mulkidzhanyan AY, Steinhoff HJ. Conformational dynamics of sensory rhodopsin II in nanolipoprotein and styrene-maleic acid lipid particles. Photochem Photobiol. 95(5):1195-1204.

Danielczak B, Meister A, Keller S. Influence of Mg(2+) and Ca(2+) on Nanodisc Formation by Diisobutylene/Maleic Acid (DIBMA) Copolymer. Chem Phys Lipids. 221: 30-38.

Kopf AH, Koorengevela MC, van Walreea CA, Dafforn TR, Killian A. A simple and convenient method for the hydrolysis of styrene-maleic anhydride copolymers to styrene-maleic acid copolymers. Chem Phys Lipids. 218: 85-90.

Sahoo BR, Genjo T, Nakayama TW, Stoddard AK, Ando T, Yasuhara K, Fierke CA, Ramamoorthy A. A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation, Royal Soc Chem, 10, 3976-86.

Bada Juarez JF, Harper AJ, Judge PJ, Tonge SR, Watts A. From polymer chemistry to structural biology: The development of SMA and related amphipathic polymers for membrane protein extraction and solubilisation. Chem Phys Lipids. 221:167-175.

Dathe A, Heitkamp T, Pérez I, Sielaff H, Westphal A, Reuter S, Mrowka R, Börsch M.Observing monomer - dimer transitions of neurotensin receptors 1 in single SMALPs by homoFRET and in an ABELtrap. SPIE BIiOS 10884

Prakash P, Litwin D, Liang H, Sarkar-Banerjee S, Dolino D, Zhou Y, Hancock JF, Jayaraman V, Gorfe AA. Dynamics of membrane-bound G12V-KRAS from simulations and single-molecule FRET in native nanodiscs. Biophys J.116(2):179-183.

Zhang TR, Wang CX, Dong FQ, Gao ZY, Zhang CJ, Zhang XJ, Fu LM, Wang Y, Zhang JP. Uptake and translocation of styrene maleic anhydride nanoparticles in Murraya exotica plants as revealed by noninvasive, real-time optical bioimaging. Environ Sci Technol. 53(3):1471-1481.

Redhair M, Clouser AF, Atkins WM. Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs. Chem Phys Lipids 220:14-22.

Bali AP, Sahu ID, Craig AF, Clark EE, Burridge KM, Dolan MT, Dabney-Smith C, Konkolewicz D, Lorigan GA. Structural Characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy. Chem Phys Lipids. 220:6-13.

Domínguez Pardo JJ, van Walree CA, Egmond MR, Koorengevel MC, Killian JA. Nanodiscs bounded by styrene-maleic acid allow trans-cis isomerization of enclosed photoswitches of azobenzene labeled lipids. Chem Phys Lipids 220:1-5.

Ravula T, Hardin NZ, Ramamoorthy A. Polymer nanodiscs: advantages and limitations. Chem Phys Lipids 219:45-49.

Bassard JE, Laursen T, Molecular snapshots of dynamic membrane-bound metabolons. Methods in Enzymology 167, 1-27.

Karlova MG, Voskoboynikova N, Gluhov GS, Abramochkin D, Malak OA, Mulkidzhanyan A, Loussouarn G, Steinhoff HJ, Shaitan KV, Sokolova OS. Detergent-free solubilization of human Kv channels expressed in mammalian cells. Chem Phys Lipids. 219:50-57.

Teo ACK, Lee SC, Pollock NL, Stroud Z, Hall S, Thakker A, Pitt AR, Dafforn TR, Spickett CM, Roper DI. Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Sci Rep. 9(1):1813.

Orekhov PS, Bozdaganyan M, Voskoboynikova N, Mulkidjanian AY, Steinhoff HJ, Shaitan KV. Styrene-maleic acid copolymers form SMALPs by pulling lipid patches out of the lipid bilayer. Langmuir 35(10):3748-3758

Salnikov ES, Aisenbrey C, Anantharamaiah GM, Bechinger B. Solid-state NMR structural investigations of peptide-based nanodiscs and of transmembrane helices in bicellar arrangements. Chem Phys Lipids 219:58-71.

Hardin NZ, Ravula T, Mauro GD, Ramamoorthy A. Hydrophobic functionalization of polyacrylic acid as a versatile platform for the development of polymer lipid nanodisks. Small 15(9):e1804813.

Keener JE, Zambrano DE, Zhang G, Zak CK, Reid DJ, Deodhar BS, Pemberton JE, Prell JS, Marty MT. Chemical additives enable native mass spectrometry measurement of membrane protein oligomeric state within intact nanodiscs. J Am Chem Soc, 141(2):1054-1061.

Yeh, V. Study of Bacteriorhodopsin in a Controlled Lipid Environment Springer Thesis, pp 1-36.

Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments. Methods Enzymol. 2019;614:143-185

Yao Y, Marassi FM. Reconstitution and Characterization of BCL-2 Family Proteins in Lipid Bilayer Nanodiscs. Methods Mol Biol. 1877:233-246.

Overduin M & Esmaili M. Memtein: the fundamental unit of membrane:protein structure and function Chem Physics Lipids. 218:73-84.

Brady NG, Qian S, Bruce BD. Analysis of Styrene Maleic Acid Alternating Copolymer Supramolecular Assemblies in Solution by Small Angle X-Ray Scattering. Eur Polymer J. 111: 178-184.

Gulamhussein AA, Meah D, Soja DD, Fenner S, Saidani Z, Akram A, Lallie S, Mathews A, Painter C, Liddar MK, Mohammed Z, Chiu LK, Sumar SS, Healy H, lHussain N, Patel JH, Hall SC, Dafforn TR, Rothnie AJ. Examining the stability of membrane proteins within SMALPs. Eur Polymer J. 112: 120-125.

Korotych O, Mondal J, Gattás-Asfura KM, Hendricks J, Bruce BD. Evaluation of commercially available styrene-co-maleic acid polymers for the extraction of membrane proteins from spinach chloroplast thylakoids. Eur Polymer J. 114, 485-500.

Altenberg GA, Liang H, “Polymer-encases nanodiscs with improved buffer compatibility”, US patent filing 0062469

Ramamoorthy A, Ramadugu VS, RavulaT, Hardin NZ, Cox SJ, Polymer-based lipid nanodiscs and macrodiscs, US patent filing 0154698


Ravula T, Hardin NZ, Di Mauro GM, Ramamoorthy A. Styrene maleic acid derivates to enhance the applications of bio-inspired polymer based lipid-nanodiscs. Eur Polymer J. 108: 597-602.

Qiu W, Fu Z, Xu GG, Grassucci RA, Zhang Y, Frank J, Hendrickson WA, Guo Y. Structure and activity of lipid bilayer within a membrane-protein transporter. Proc Natl Acad Sci USA 115(51):12985-12990.

Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev. 118(7):3559-3607.

Harding BD, Dixit G, Burridge KM, Sahu ID, Dabney-Smith C, Edelmann RE, Konkolewicz D, Lorigan GA. Characterizing the structure of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for membrane protein spectroscopic studies. Chem Phys Lipids 218:65-72.

Simon KS, Pollock NL, Lee SC. Membrane protein nanoparticles: the shape of things to come. Biochem Soc Trans. 46(6):1495-1504.

Danielczak B, Keller S. Collisional lipid exchange among DIBMA-encapsulated nanodiscs (DIBMALPs). Eur Polymer J.109: 206-213.

Luna M, Vazir M, Vaish A, Chong S, Chen I, Yamane HK. Generation of membrane proteins in polymer-based lipoparticles as flow cytometry antigens Eur Polymer J. 109, 483-488.

Overduin M & Klumperman B. Advancing membrane biology with poly(styrene-co-maleic acid)-based native nanodiscs. Eur Polymer J. 110, 63-68

Hellwig N, Peetz O, Ahdash Z, Tascón I, Booth PJ, Mikusevic V, Diskowski M, Politis , Hellmich Y, Hänelt I, Reading E, Morgner N. Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chem. Commun. 54, 13702-13705.

Barniol-Xicota M, Verhelst SHL. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. J Am Chem Soc. 140(44):14557-14561.

Kopf AH, Koorengevel MC, van Walree CA, Dafforn TR, Killian JA. A simple and convenient method for the hydrolysis of styrene-maleic anhydride copolymers to styrene-maleic acid copolymers. Chem Phys Lipids 218:85-90.

Schmidt V, Sidore M, Bechara C, Duneau JP, Sturgis JN. The lipid environment of Escherichia coli Aquaporin Z. BBA Biomembr. 1861(2):431-440.

Liu Y, Moura ECCM, Dörr JM, Scheidelaar S, Heger M, Egmond MR, Killian JA, Mohammadi T, Breukink E. Bacillus subtilis MraY in detergent-free system of nanodiscs wrapped by styrene-maleic acid copolymers. PLoS One. 13(11):e0206692.

Lousa CdeM & Postis, V. Recent Advances on Polymer Lipid Particles (PoLP) in Membrane Protein Research, eLS, John Wiley & Sons, Ltd: Chicester.

Angelisová P, Ballek O, Sýkor J, Benad O, Čajk T, Pokorná J, Pinkas D, Hořejší, V. The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. BBA Biomembranes, 1861(1):130-141.

Ravula T, Hardin NZ, Bai J, Im SC, Waskell L, Ramamoorthy A. Effect of polymer charge on functional reconstitution of membrane proteins in polymer nanodiscs. Chem Commun (Camb). 54(69):9615-9618.

Hall SCL, Tognoloni C, Charlton J, Bragginton ÉC, Rothnie AJ, Sridhar P, Wheatley M, Knowles TJ, Arnold T, Edler KJ, Dafforn TR. An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles. Nanoscale. 10(22):10609-10619.

Popot JL. Membrane Proteins in Aqueous Solutions Optical Spectroscopy of Membrane Protein/Amphipol Complexes, Biological and Medical Physics, Biomedical Engineering. 381-404

Thonghin N, Kargas V, Clews J, Ford RC. Cryo-electron microscopy of membrane proteins. BBA Methods. pii: S1046-2023(17)30374-2.

Sgro GG, Costa TRD. Cryo-EM Grid Preparation of Membrane Protein Samples for Single Particle Analysis. Front Mol Biosci. 5:74.

Mio K, Sato C. Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys Rev. 10(2):307-316.

Xue M, Cheng L, Faustino I, Guo W, Marrink SJ. Molecular Mechanism of Lipid Nanodisk Formation by Styrene-Maleic Acid Copolymers. Biophys J.115(3):494-502.

Domínguez Pardo JJ, Koorengevel MC, Uwugiaren N, Weijers J, Kopf AH, Jahn H, van Walree CA, van Steenbergen MJ, Killian JA. Membrane Solubilization by Styrene-Maleic Acid Copolymers: Delineating the Role of Polymer Length. Biophys J. 115(1):129-138.

Radoicic J, Park SH, Opella SJ. Macrodiscs Comprising SMALPs for Oriented Sample Solid-State NMR Spectroscopy of Membrane Proteins. Biophys J. 115(1):22-25.

Sun C, Benlekbir S, Venkatakrishnan P, Wang Y, Hong S , Hosler J, Tajkhorshid E, Rubinstein JL & Gennis RB. Structure of the alternative complex III in a supercomplex with cytochrome oxidase, Nature, 557(7703):123-126.

Damian M, Pons V, Renault P, M'Kadmi C, Delort B, Hartmann L, Kaya AI, Louet M, Gagne D, Ben Haj Salah K, Denoyelle S, Ferry G, Boutin JA, Wagner R, Fehrentz JA, Martinez J, Marie J, Floquet N, Galès C, Mary S, Hamm HE, Banères JL. GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proc Natl Acad Sci USA, 115(17):4501-4506

Stroud Z, Hall SCL, Dafforn TR. Purification of membrane proteins free from conventional detergents: SMA, new polymers, new opportunities and new insights. Methods. pii: S1046-2023(17)30488-7.

Grethen A, Glueck D, Keller S. Role of Coulombic Repulsion in Collisional Lipid Transfer Among SMA(2:1)-Bounded Nanodiscs. J Membr Biol. 251(3):443-451.

Liang B, Tamm LK. Solution NMR of SNAREs, complexin and α-synuclein in association with membrane-mimetics. Prog Nucl Magn Reson Spect. 105, 41-53.

Hardy D, Desuzinges Mandon E, Rothnie A, Jawhari A. The yin and yang of solubilization and stabilization for wild-type and full-length membrane protein. Methods. pii: S1046-2023(17)30434-6.

Skrzypek R, Iqbal S, Callaghan R. Methods of reconstitution to investigate membrane protein function. Methods. pii: S1046-2023(17)30446-2.

Calabrese AN, Radford SE. Mass spectrometry-enabled structural biology of membrane proteins. Methods. pii: S1046-2023(17)30373-0.

Maher J, Allen M. Planar lipid bilayers in recombinant ion channel research. Methods. pii: S1046-2023(17)30449-8.

Penny WM, Palmer CP. Determination of lipid bilayer affinities and solvation characteristics by electrokinetic chromatography using polymer-bound lipid bilayer nanodiscs. Electrophoresis. 39(5-6):844-852.

Yasuhara K, Arakida J, Ravula T, Ramadugu SK, Sahoo B, Kikuchi JI, Ramamoorthy A. Spontaneous Lipid Nanodisc Fomation by Amphiphilic Polymethacrylate Copolymers. J Am Chem Soc. 139(51):18657-18663.

Ravula T, Hardin NZ, Ramadugu SK, Cox SJ, Ramamoorthy A. Formation of pH-Resistant Monodispersed Polymer-Lipid Nanodiscs. Angew Chem Int Ed Engl. 57(5):1342-1345.

Swainsbury DJK, Proctor MS, Hitchcock A, Cartron ML, Qian P, Martin EC, Jackson PJ, Madsen J, Armes SP, Neil Hunter C. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc(1) and Synechocystis sp. PCC 6803 cytochrome b(6)f complexes with styrene maleic acid. Biochim Biophys Acta. pii: S0005-2728(17)30197-4.

Oluwole AO, Klingler J, Danielczak B, Babalola JO, Vargas C, Pabst G, Keller S. Formation of Lipid-Bilayer Nanodiscs by Diisobutylene/Maleic Acid (DIBMA) Copolymer. Langmuir. 33(50):14378-14388.

Schmidt V, Sturgis JN. Modifying styrene-maleic acid co-polymer for studying lipid nanodiscs. Biochim Biophys Acta. 1860(3):777-783.

Hall SCL, Tognoloni C, Price GJ, Klumperman B, Edler KJ, Dafforn TR, Arnold T. The influence of poly(styrene-co-maleic acid) copolymer structure on the properties and self-assembly of SMALP nanodiscs. Biomacromolecules 19(3):761-772.

Esmaili M and Overduin M. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers, Biochim Biophys Acta.1860(2):257-263.

Parmar M, Rawson S, Scarff CA, Goldman A, Dafforn TR, Muench SP, Postis VLG. Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure. Biochim Biophys Acta 1860(2):378-383.


Fiori MC, Jiang Y, Zheng W, Anzaldua M, Borgnia MJ, Altenberg GA & Liang H. Polymer Nanodiscs: Discoidal Amphiphilic Block Copolymer Membranes as a New Platform for Membrane Proteins. Sci Rep 7: 15227

Reading E, Hall Z, Martens C, Haghighi T, Findlay H, Ahdash Z, Politis A, Booth PJ. Interrogating membrane protein conformational dynamics within native lipid compositions. Angew Chem Int Ed Engl. 56(49):15654-15657.

Meister A, Blume A. (Cryo)Transmission Electron Microscopy of Phospholipid Model Membranes Interacting with Amphiphilic and Polyphilic Molecules. Polymers 2017, 9(10), 521.

Efremov RG, Gatsogiannis C, Raunser S. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM. Methods Enzymol. 594:1-30.

Ma F, Swainsbury DJK, Jones MR, van Grondelle R. Photoprotection through ultrafast charge recombination in photochemical reaction centres under oxidizing conditions. Philos Trans R Soc Lond B Biol Sci. 372(1730). pii: 20160378.

Smith AAA, Autzen HE, Laursen T, Wu V, Yen M, Hall A, Hansen SD, Cheng Y, Xu T. Controlling Styrene Maleic acid lipid particles through RAFT. Biomacromolecules 18(11):3706-3713.

Ramadugu VSK, Di Mauro GM, Ravula T, Ramamoorthy A. Polymer nanodiscs and macro-nanodiscs of a varying lipid composition. Chem Commun (Camb). 53(78):10824-10826.

Ravula T, Hardin NZ, Ramadugu SK, Ramamoorthy A. pH Tunable and Divalent Metal Ion Tolerant Polymer Lipid Nanodiscs. Langmuir33(40):10655-10662.

Grethen A, Oluwole AO, Danielczak B, Vargas C, Keller S. Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer. Sci Rep. 7(1):11517.

Pardo JJD, Dörr JM, Renne MF, Ould-Braham T, Koorengevel MC, van Steenbergen MJ, Killian JA. Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers. Chem Phys Lipids. pii: S0009-3084(17)30155-X.

Pollock NL, Lee SC, Patel JH, Gulamhussein AA, Rothnie AJ. Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. Biochim Biophys Acta. pii: S0005-2736(17)30262-6

Dörr JM, van Coevorden-Hameete MH, Hoogenraad CC, Antoinette Killian J. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy. Biochim Biophys Acta. 1859(11):2155-2160.

Fiori MC, Jiang Y, Altenberg GA, Liang H. Polymer-encased nanodiscs with improved buffer compatibility. Sci Rep. 7(1):7432.

Swainsbury DJK, Scheidelaar S, Foster N, van Grondelle R, Killian JA, Jones MR. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes. Biochim Biophys Acta. 1859(10):2133-2143.

Ravula T, Ramadugu SK, Di Mauro G, Ramamoorthy A. Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs. Angew Chem Int Ed Engl. 56(38):11466-11470.

Denisov IG, Sligar SG. Nanodiscs in Membrane Biochemistry and Biophysics. Chem Rev. 117(6):4669-4713.

Stetsenko A, Albert Guskov A. An Overview of the Top Ten Detergents Used for Membrane Protein Crystallization. Crystals 7, 197.

Huang J, Turner SR. Recent advances in alternating copolymers: The synthesis, modification, and applications of precision polymers. Polymer 116, 572-586.

Dowall JS, Ntai I, Hake J, Whitley PR, Mason JM, Pudney CR, Brown DR. Steady-State Kinetics of α-Synuclein Ferrireductase Activity Identifies the Catalytically Competent Species. Biochemistry. 56(19):2497-2505.

Hu Z, Ho JC, Nallani M. Synthetic (polymer) biology (membrane): functionalization of polymer scaffolds for membrane proteins. Curr Opin Biotechnol. 46:51-56.

Bos I, Bland KM, Tian L, Croce R, Frankel LK, van Amerongen H, Bricker TM, Wientjes E. Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I. Biochim Biophys Acta. 1858(5):371-378.

Zoghbi ME, Altenberg GA. Membrane protein reconstitution in nanodiscs for luminescence spectroscopy studies. Nanotech Rev 6: 1

Penny WM, Steele HB, Ross JB, Palmer CP. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase. Electrophoresis. 38(5):738-746.

Beales PA, Khan S, Muench SP, Jeuken LJ. Durable vesicles for reconstitution of membrane proteins in biotechnology. Biochem Soc Trans. 45(1):15-26.

Sahu ID, Zhang R, Dunagan MM, Craig AF, Lorigan GA. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins. J Phys Chem B. 121(21):5312-5321.

Zhang R, Sahu ID, Bali AP, Dabney-Smith C, Lorigan GA. Characterization of the structure of lipodisq nanoparticles in the presence of KCNE1 by dynamic light scattering and transmission electron microscopy. Chem Phys Lipids. 203:19-23.

Cuevas Arenas R, Danielczak B, Martel A, Porcar L, Breyton C, Ebel C, Keller S. Fast Collisional Lipid Transfer Among Polymer-Bounded Nanodiscs. Sci Rep. 5;7:45875.

Puthenveetil R, Nguyen K, Vinogradova O. Nanodiscs and Solution NMR: preparation, application and challenges. Nanotechnol Rev. 6(1):111-126.

Rehan S, Paavilainen VO, Jaakola VP. Functional reconstitution of human equilibrative nucleoside transporter-1 into styrene maleic acid co-polymer lipid particles. Biochim Biophys Acta. 1859(5):1059-1065.

Bersch B, Dörr JM, Hessel A, Killian JA, Schanda P. Proton-Detected Solid-State NMR Spectroscopy of a Zinc Diffusion Facilitator Protein in Native Nanodiscs. Angew Chem Int Ed Engl. 56(9):2508-2512.

Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene / Maleic Acid Copolymer. Angew Chem Int Ed Engl. 6;56(7):1919-1924.

Broecker J, Eger BT, Ernst OP. Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs. Structure 25, 1–9.

Dominguez Pardo JJ, Dörr JM, Iyer A, Cox RC, Scheidelaar S, Koorengevel MC, Subramaniam V, Killian JA. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. Eur Biophys J. 46(1):91-101.


D. V. Bagrova et al, Characterization of Lipodisc Nanoparticles Containing Sensory Rhodopsin II and Its Cognate Transducer from Natronomonas pharaonis. Biophysics 61(6): 942–949.

Rawson S, Davies S, Lippiat JD, Muench SP. The changing landscape of membrane protein structural biology through developments in electron microscopy, Molecular Membrane Biology, 33:1-2, 12-22

Komar J, Alvira S, Schulze RJ, Martin R, Lycklama A Nijeholt JA, Lee SC, Dafforn TR, Deckers-Hebestreit G, Berger I, Schaffitzel C, Collinson I. Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Biochem J. 473(19):3341-54.

Viegas A, Viennet T, Etzkorn M. The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem. 397(12):1335-1354.

Grewal YS, Shiddiky MJ, Mahler SM, Cangelosi GA, Trau M. Nanoyeast and Other Cell Envelope Compositions for Protein Studies and Biosensor Applications. ACS Appl Mater Interfaces. 8(45):30649-30664.

Laursen T, Borch J, Knudsen C, Bavishi K, Torta F, Martens HJ, Silvestro D, Hatzakis NS, Wenk MR, Dafforn TR, Olsen CE, Motawia MS, Hamberger B, Møller BL, Bassard JE. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science. 354(6314):890-893.

Scheidelaar S, Koorengevel MC, van Walree CA, Dominguez JJ, Dörr JM, Killian JA. Effect of Polymer Composition and pH on Membrane Solubilization by Styrene-Maleic Acid Copolymers. Biophys J. 111(9):1974-1986.

Craig AF, Clark EE, Sahu ID, Zhang R, Frantz ND, Al-Abdul-Wahid MS, Dabney-Smith C, Konkolewicz D, Lorigan GA. Tuning the size of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using RAFT polymerization for biophysical studies. Biochim Biophys Acta. 1858(11):2931-2939.

Parmar MJ, Lousa Cde M, Muench SP, Goldman A, Postis VL. Artificial membranes for membrane protein purification, functionality and structure studies. Biochem Soc Trans. 44(3):877-82.

Hazell G, Arnold T, Barker RD, Clifton LA, Steinke NJ, Tognoloni C, Edler KJ. Evidence of Lipid Exchange in Styrene Maleic Acid Lipid Particle (SMALP) Nanodisc Systems. Langmuir 15;32(45):11845-11853.

Morrison KA, Akram A, Mathews A, Khan ZA, Patel JH, Zhou C, Hardy DJ, Moore-Kelly C, Patel R, Odiba V, Knowles T, Javed MU, Chmel NP, Dafforn TR, Rothnie AJ. Membrane protein extraction and purification using styrene-maleic acid (SMA) co-polymer: Effect of variations in polymer structure. Biochem J 1;473(23):4349-4360.

Rajesh S, Overduin M, Bonev BB. NMR of Membrane Proteins: Beyond Crystals. Adv Exp Med Biol. 922:29-42.

Rothnie AJ. Detergent-Free Membrane Protein Purification. Methods Mol Biol. 1432:261-7.

Lee SC, Pollock NL. Membrane proteins: is the future disc shaped? Biochem Soc Trans. 44(4):1011-8.

Smirnova IA, Sjöstrand D, Li F, Björck M, Schäfer J, Östbye H, Högbom M, von Ballmoos C, Lander GC, Ädelroth P, Brzezinski P. Isolation of yeast complex IV in native lipid nanodiscs. Biochim Biophys Acta. 1858(12):2984-2992.

Cuevas Arenas R, Klingler J, Vargas C, Keller S. Influence of lipid bilayer properties on nanodisc formation mediated by styrene/maleic acid copolymers. Nanoscale. 8(32):15016-26.

Hardy D, Bill RM, Jawhari A, Rothnie AJ. Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochem Soc Trans. 44(3):838-44.

Dafforn TR, Lee SC, Knowles TJ, Postis V, Jamshad M, Parslow R, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP. A Method for Detergent-free isolation of Membrane Protein with its Local Lipid Environment, Nature Protocols, 11(7), 1149-1162.

Lee SC, Khalid S, Pollock NL, Knowles TJ, Edler K, Rothnie AJ, Thomas ORT, Dafforn TR, Encapsulated Membrane Proteins: A Simplified System For Molecular Simulation, BBA - Biomembranes, 1858(10):2549-57.

Wheatley M, Charlton J, Jamshad M, Routledge SJ, Bailey S, La-Borde PJ, Azam MT, Logan RT, Bill RM, Dafforn TR, Poyner DR. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential. Biochem Soc Trans. 44:619-23.

Lindhoud S, Carvalho V, Pronk JW, Aubin-Tam ME, SMA-SH: Modified Styrene-Maleic Acid copolymer for functionalization of lipid nanodiscs. Biomacromolecules, 17(4):1516-22.

Routledge SJ, Mikaliunaite L, Patel A, Clare M, Cartwright SP, Bawa Z, Wilks MD, Low F, Hardy D, Rothnie AJ, Bill RM. The synthesis of recombinant membrane proteins in yeast for structural studies. Methods 95:26-37.

Dörr JM, Scheidelaar S, Koorengevel MC, Dominguez JJ, Schäfer M, van Walree CA, Killian JA. The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur Biophys J 45:3-21.

Logez C, Damian M, Legros C, Dupré C, Guéry M, Mary S, Wagner R, M'Kadmi C, Nosjean O, Fould B, Marie J, Fehrentz JA, Martinez J, Ferry G, Boutin JA, Banères JL. Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles. Biochemistry 55:38-48.


Zhang R, Sahu ID, Liu L, Osatuke A, Comer RG, Dabney-Smith C, Lorigan GA. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies. Biochim Biophys Acta 1848:329-33. PMID: 24853657.

Postis V, Rawson S, Mitchell JK, Lee SC, Parslow RA, Dafforn TR, Baldwin SA, Muench SP. The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim Biophys Acta 1848:496-501. PMID: 25450810.

Vargas C, Arenas RC, Frotscher E, Keller S. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. Nanoscale 7:20685-96. PMID: 26599076.

Skaar K, Korza HJ, Tarry M, Sekyrova P, Högbom M. Expression and Subcellular Distribution of GFP-Tagged Human Tetraspanin Proteins in Saccharomyces cerevisiae. PLoS One 10(7):e0134041. PMID: 26218426.

Bell AJ, Frankel LK, Bricker TM. High Yield Non-detergent Isolation of Photosystem I-Light-harvesting Chlorophyll II Membranes from Spinach Thylakoids: IMPLICATIONS FOR THE ORGANIZATION OF THE PS I ANTENNAE IN HIGHER PLANTS. J Biol Chem 290(30):18429-37. PMID: 26055710.

Scheidelaar S, Koorengevel MC, Pardo JD, Meeldijk JD, Breukink E, Killian JA. Molecular Model for the Solubilization of Membranes into Nanodisks by Styrene Maleic Acid Copolymers. Biophys J 108, 279–290. PMC4302193.

Li D, Li J, Zhuang Y, Zhang L, Xiong Y, Shi P, Tian C. Nano-size uni-lamellar lipodisq improved in situ auto-phosphorylation analysis of E. coli tyrosine kinase using (19)F nuclear magnetic resonance. Protein Cell 6:229-33. PMID: 25564343.

Tanaka M, Hosotani A, Tachibana Y, Nakano M, Iwasaki K, Kawakami T, Mukai T. Preparation and Characterization of Reconstituted Lipid-Synthetic Polymer Discoidal Particles. Langmuir. 31(46):12719-26. PMID: 26531224.

Prabudiansyah I, Kusters I, Caforio A, Driessen AJ. Characterization of the annular lipid shell of the Sec translocon. Biochim Biophys Acta 1848:2050-6. PMID: 26129641.

Goddard AD, Dijkman PM, Adamson RJ, dos Reis RI, Watts A. Reconstitution of membrane proteins: a GPCR as an example. Methods Enzymol 556:405-24. PMID: 25857793.

Jamshad M, Charlton J, Lin YP, Routledge SJ, Bawa Z, Knowles TJ, Overduin M, Dekker N, Dafforn TR, Bill RM, Poyner DR, Wheatley M. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep 35 pii: e00188. PMID: 25720391.


Jamshad M, Grimard V, Idini I, Knowles TJ, Dowle MR, Schofield N, Sridhar P, Lin YP, Finka R, Wheatley M, Thomas ORT, Palmer RE, Overduin M, Govaerts C, Ruysschaert JM, Edler KJ, Dafforn TR. Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Research 8: 774-789.

Paulin S, Jamshad M, Dafforn TR, Garcia-Lara J, Foster SJ, Galley NF, Roper DI, Rosado H, Taylor PW. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a. Nanotechnology 25:285101. PMID: 24972373.

Swainsbury DJ, Scheidelaar S, van Grondelle R, Killian JA, Jones MR. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew Chem Int Ed Engl 53(44):11803-7. PMID: 25212490.

Dörr JM, Koorengevel MC, Schäfer M, Prokofyev AV, Scheidelaar S, van der Cruijsen EA, Dafforn TR, Baldus M, Killian JA. Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci USA 111(52):18607-12. PMID: 25512535.

Sahu ID, Kroncke BM, Zhang R, Dunagan MM, Smith HJ, Craig A, McCarrick RM, Sanders CR, Lorigan GA. Structural investigation of the transmembrane domain of KCNE1 in proteoliposomes. Biochemistry 53:6392-401. PMID: 25234231.

Malhotra K, Alder NN. Advances in the use of nanoscale bilayers to study membrane protein structure and functionStructural investigation of the transmembrane domain of KCNE1 in proteoliposomes. Biotechnol Genet Eng Rev 30:79-93. PMID: 25023464.


Gulati S, Jamshad M, Knowles TJ, Morrison KA, Downing R, Cant N, Collins R, Koenderink JB, Ford RC, Overduin M, Kerr ID, Dafforn TR, Rothnie AJ. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J 461:269-78. PMID: 24758594.

Sahu ID, McCarrick RM, Troxel KR, Zhang R, Smith HJ, Dunagan MM, Swartz MS, Rajan PV, Kroncke BM, Sanders CR, Lorigan GA. DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry 52:6627-32. PMID: 23984855.

Long AR, O'Brien CC, Malhotra K, Schwall CT, Albert AD, Watts A, Alder NN. A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 13:41. PMID: 23663692.


Orwick MC, Judge PJ, Procek J, Lindholm L, Graziadei A, Engel A, Gröbner G, Watts A. Detergent-free formation and physicochemical characterization of nanosized lipid-polymer complexes: Lipodisq. Angew Chem Int Ed Engl 51:4653-7. PMID: 22473824.

Orwick-Rydmark M, Lovett JE, Graziadei A, Lindholm L, Hicks MR, Watts A. Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett 12:4687-92. PMID: 22827450.

Banerjee S, Pal TK, Guha SK. Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer. Biochim Biophys Acta. 1818(3):537-50. 22197504.

Dafforn TR, Thomas ORT. Protein extraction, Patent GB20110007737 20110509; WO2012GB00423 20120509.


Jamshad M, Lin YP, Knowles TJ, Parslow RA, Harris C, Wheatley M, Poyner DR, Bill RM, Thomas OR, Overduin M, Dafforn TR. Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem Soc Trans 39:813-8. PMID: 21599653.

Rajesh S, Knowles T, Overduin M. Production of membrane proteins without cells or detergents. N Biotechnol 28:250-4. PMID: 20654746.


Overduin M, Jamshad M, Lin Y, Knowles T, Jazayeri A, Poyner D, Bill R, Wheatley M, Dafforn T. Amphipathic polymer-based nanoparticles for purifying and characterizing stable and active GPCRs without detergents. Keystone Symposium on G Protein-Coupled Receptors.

Overduin M, Knowles T, Dafforn T. Solubilisation of membrane proteins. Patent GB2010/001309; WO2011/004158.


Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131:7484-5. PMID: 19449872.


Tonge S. Compositions comprising a lipid and copolymer of styrene and maleic acid (note that the membrane protein data included in this patent is from Knowles et. al., 2009). Patent PCT/GB2006/050134; WO2006/129127.

Overduin, M, Tonge S. Memtein: Providing Membrane Protein Solutions, Venturefest finalist at the Oxford University Business Plan Competition.


Michael Overduin submits Nanodisks for Drug Screening to Birmingham Research and Development Ltd, and is awarded a Technology Transfer Fund Grant by the Central Technology Belt for commercial development of the SMALP system with Steve Tonge being a co-applicant.


A Royal Society Wolfson Research Merit Award to Michael Overduin entitled Structural Biology of Membrane Spanning Proteins by NMR Spectroscopy is funded from 2004-2009.